Javascript must be enabled to continue!
KAP1-associated transcriptional inhibitory complex regulates C2C12 myoblasts differentiation and mitochondrial biogenesis via miR-133a repression
View through CrossRef
AbstractThe differentiation of myoblasts plays a key role in the growth of biological individuals and the reconstruction of muscle tissue. Several microRNAs are significantly upregulated during the differentiation of myoblasts and their target genes have been explored. However, the molecular mechanisms underlying the transcriptional regulation of microRNAs remain elusive. In the present study, we found that the expression of miR-133a is increased during the differentiation of C2C12 myoblasts. miR-133a mimic is sufficient to induce the biogenesis of mitochondria and differentiation of C2C12 myoblasts whereas miR-133a inhibitor abolishes cell differentiation. Using CRISPR affinity purification in situ of regulatory elements (CAPTURE) technique, we further dissected the regulatory mechanisms of miR-133a expression and found that KAP1-associated transcription complex accounts for the suppression of miR-133a in C2C12 myoblasts. Knockdown of KAP1 increased the expression of miR-133a, which contributed to the biogenesis of mitochondria and differentiation of C2C12 myoblasts. To our knowledge, this is the first study using the CAPTURE technology to identify the regulatory factors of miR-133a during cell differentiation, which may provide new ideas for understanding the precision regulatory machinery of microRNAs during different biological processes.
Springer Science and Business Media LLC
Title: KAP1-associated transcriptional inhibitory complex regulates C2C12 myoblasts differentiation and mitochondrial biogenesis via miR-133a repression
Description:
AbstractThe differentiation of myoblasts plays a key role in the growth of biological individuals and the reconstruction of muscle tissue.
Several microRNAs are significantly upregulated during the differentiation of myoblasts and their target genes have been explored.
However, the molecular mechanisms underlying the transcriptional regulation of microRNAs remain elusive.
In the present study, we found that the expression of miR-133a is increased during the differentiation of C2C12 myoblasts.
miR-133a mimic is sufficient to induce the biogenesis of mitochondria and differentiation of C2C12 myoblasts whereas miR-133a inhibitor abolishes cell differentiation.
Using CRISPR affinity purification in situ of regulatory elements (CAPTURE) technique, we further dissected the regulatory mechanisms of miR-133a expression and found that KAP1-associated transcription complex accounts for the suppression of miR-133a in C2C12 myoblasts.
Knockdown of KAP1 increased the expression of miR-133a, which contributed to the biogenesis of mitochondria and differentiation of C2C12 myoblasts.
To our knowledge, this is the first study using the CAPTURE technology to identify the regulatory factors of miR-133a during cell differentiation, which may provide new ideas for understanding the precision regulatory machinery of microRNAs during different biological processes.
Related Results
MICRORNAS IN HYPERTENSION: MOLECULAR MECHANISMS AND THERAPEUTIC PERSPECTIVES - A BIOINFORMATICS APPROACH
MICRORNAS IN HYPERTENSION: MOLECULAR MECHANISMS AND THERAPEUTIC PERSPECTIVES - A BIOINFORMATICS APPROACH
This study presents a comprehensive structural bioinformatics analysis of five key microRNAs (miR-21, miR-126, miR-133a, miR-155, and miR-181a), focusing on their secondary and ter...
MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN
MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN
Abstract
Background
MicroRNAs (miRNAs) can function as either oncogenes or tumor suppressor genes via regulation of cell proliferation and/or apo...
Abstract B31: miRNAs regulated cancer metastasis in esophageal squamous cell carcinoma
Abstract B31: miRNAs regulated cancer metastasis in esophageal squamous cell carcinoma
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs and negatively regulate gene expression through base pairing of 3' UTRs of the target gen...
The effect of miRNAs and MALAT1 related with the prognosis of Her-2 positive breast cancer patients with lymph node metastasis
The effect of miRNAs and MALAT1 related with the prognosis of Her-2 positive breast cancer patients with lymph node metastasis
Abstract
Background: To analyze and screen the miRNAs associated with lymph node metastasis of breast cancer (BC), and to explore the roles of these miRNAs in the prolifera...
The effect of miR-138 on the proliferation and apoptosis of breast cancer cells
through the NF-κB/VEGF signaling pathway
The effect of miR-138 on the proliferation and apoptosis of breast cancer cells
through the NF-κB/VEGF signaling pathway
The analyze the effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the
NF-κB/VEGF signaling pathway is the Objective of this experiment. For this a...
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools
MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide ...
Abstract 1845: Cooperative function between miR-142-3p and miR-142-5p in hepatocellular carcinoma.
Abstract 1845: Cooperative function between miR-142-3p and miR-142-5p in hepatocellular carcinoma.
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs regulate gene expression at post-transcriptional level and involved in a wide range of biological processes. Ab...
miRNA-223 Promotes Gastric Cancer Invasion and Metastasis by Targeting Tumor Suppressor EPB41L3
miRNA-223 Promotes Gastric Cancer Invasion and Metastasis by Targeting Tumor Suppressor EPB41L3
Abstract
Traditional research modes aim to find cancer-specific single therapeutic target. Recently, emerging evidence suggested that some micro-RNAs (miRNA) can fun...

