Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Macroscopic water vapor diffusion is not enhanced in snow

View through CrossRef
Abstract. Water vapor transport in dry snowpacks plays a significant role for snow metamorphism and the mass and energy balance of snowpacks. The molecular diffusion of water vapor in the interstitial pores is usually considered as the main or only transport mechanism, and current detailed snow physics models therefore rely on the knowledge of the effective diffusion coefficient of water vapor in snow. Numerous previous studies have concluded that water vapor diffusion in snow is enhanced relative to that in air. Various field observations also indicate that for vapor transport in snow to be explained by diffusion alone, the effective diffusion coefficient should be larger than that in air. Here we show using theory and numerical simulations on idealized and measured snow microstructures that, although sublimation and condensation of water vapor onto snow crystal surfaces do enhance microscopic diffusion in the pore space, this effect is more than countered by the restriction of diffusion space due to ice. The interaction of water vapor with the ice results in water vapor diffusing more than inert molecules in snow, but still less than in free air, regardless of the value of the accommodation coefficient of water on ice. Our results imply that processes other than diffusion, probably convection, play a preponderant role in water vapor transport in dry snowpacks.
Title: Macroscopic water vapor diffusion is not enhanced in snow
Description:
Abstract.
Water vapor transport in dry snowpacks plays a significant role for snow metamorphism and the mass and energy balance of snowpacks.
The molecular diffusion of water vapor in the interstitial pores is usually considered as the main or only transport mechanism, and current detailed snow physics models therefore rely on the knowledge of the effective diffusion coefficient of water vapor in snow.
Numerous previous studies have concluded that water vapor diffusion in snow is enhanced relative to that in air.
Various field observations also indicate that for vapor transport in snow to be explained by diffusion alone, the effective diffusion coefficient should be larger than that in air.
Here we show using theory and numerical simulations on idealized and measured snow microstructures that, although sublimation and condensation of water vapor onto snow crystal surfaces do enhance microscopic diffusion in the pore space, this effect is more than countered by the restriction of diffusion space due to ice.
The interaction of water vapor with the ice results in water vapor diffusing more than inert molecules in snow, but still less than in free air, regardless of the value of the accommodation coefficient of water on ice.
Our results imply that processes other than diffusion, probably convection, play a preponderant role in water vapor transport in dry snowpacks.

Related Results

Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Abstract. The central thesis of the authors’ paper is that macroscopic water vapor diffusion is not enhanced in snow compared to diffusion through humid air alone. Further, mass di...
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates ...
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
<p>The Fokker-Planck equation (FPE) describes the time evolution of the distribution function of fluctuating macroscopic variables.  Although the FPE was...
Revisiting the vapor diffusion coefficient in dry snow
Revisiting the vapor diffusion coefficient in dry snow
Abstract. A substantial degree of uncertainty surrounds the value of the diffusion coefficient for water vapor diffusing through snow under the influence of a temperature gradient....
A snow reanalysis for Italy: IT-SNOW
A snow reanalysis for Italy: IT-SNOW
Quantifying the amount of snow deposited across the landscape at any given time is the main goal of snow hydrology. Yet, answering this apparently simple question is still elusive ...
EFEKTIFITAS JENIS DESIKAN DAN KECEPATAN UDARA TERHADAP PENYERAPAN UAP AIR DI UDARA
EFEKTIFITAS JENIS DESIKAN DAN KECEPATAN UDARA TERHADAP PENYERAPAN UAP AIR DI UDARA
Dry air is widely used in many fields, but the excessive water vapor in the air will make some problem and should be minimized to get the required dry air. The purpose of th...
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
Alpine snow cover is shaped by complex topography, wind and insulation patterns, causing strong lateral heterogeneity in snow water equivalent (SWE) within only a few meters distan...

Back to Top