Javascript must be enabled to continue!
Comparative Analysis ofK-Nn, Naïve Bayes, and logistic regression for credit card fraud detection
View through CrossRef
Introduction:This paper highlights the outcome of the comparative study of “Various Machine learning algo-rithms namely K-NN, Naive Bayes, and Logistic Regression for Credit Card Fraud Detection” carried out based on a dataset taken from UCI.com in 2022-23 at Manav Rachna International Institute of Research and Studies.Problem: Credit card fraud is still rife today and the modes are increasingly varied. Quite often we hear of fraud cases that cause irreplaceable injury to banks and financial institutions which cannot be compensated in terms of costs. To avoid scams with various modes of credit cards, we must be able to identify and find out the modes often used by fraudsters. This scheme liberates such financial institutions and banks with complete and appropriate information using Machine Learning Techniques, not only about the modes that scammers or fraudsters often use but also ways to protect against such frauds.Objective: The present paper discusses the various machine learning models based on classification and re-gression, namely K-Nearest Neighbors, Naïve Bayes, and Logistic Regression, which are successfully able to achieve the classification accuracy of 80% using Logistic Regression with a Precision of 78%, Recall of 100%, and F1-Score of 88% for fraudulent credit card transactions. Methodology: The comparative analysis demonstrates that for Precision, Recall, and Accuracy parameters, the K-Nearest Neighbor is a better approach for detecting fraudulent transactions than the Logistic Regression and Naïve Bayes. Results:The accuracy is marginal high in Logistic Regression but the False Positive parameters are not able to identify the imbalanced data; therefore, they disguise the results and accuracy of Logistic Regression and K-Nearest Neighbor deems fit for such cases.Conclusion: This scheme depicts the automated fraud classification systems using machine learning techni-ques, namely K-Nearest Neighbor, Logistic Regression, and Naive Bayes, to produce a model that can distin-guish valid and invalid credit card transactions.Originality:Through this research, the most relevant features are used to go through the visualization of accu-racy with the confusion matrix, and accuracy calculations are obtained from the dataset used.Limitations:Deep learning techniques could have been used to fetch even better results.
Universidad Cooperativa de Colombia - UCC
Title: Comparative Analysis ofK-Nn, Naïve Bayes, and logistic regression for credit card fraud detection
Description:
Introduction:This paper highlights the outcome of the comparative study of “Various Machine learning algo-rithms namely K-NN, Naive Bayes, and Logistic Regression for Credit Card Fraud Detection” carried out based on a dataset taken from UCI.
com in 2022-23 at Manav Rachna International Institute of Research and Studies.
Problem: Credit card fraud is still rife today and the modes are increasingly varied.
Quite often we hear of fraud cases that cause irreplaceable injury to banks and financial institutions which cannot be compensated in terms of costs.
To avoid scams with various modes of credit cards, we must be able to identify and find out the modes often used by fraudsters.
This scheme liberates such financial institutions and banks with complete and appropriate information using Machine Learning Techniques, not only about the modes that scammers or fraudsters often use but also ways to protect against such frauds.
Objective: The present paper discusses the various machine learning models based on classification and re-gression, namely K-Nearest Neighbors, Naïve Bayes, and Logistic Regression, which are successfully able to achieve the classification accuracy of 80% using Logistic Regression with a Precision of 78%, Recall of 100%, and F1-Score of 88% for fraudulent credit card transactions.
Methodology: The comparative analysis demonstrates that for Precision, Recall, and Accuracy parameters, the K-Nearest Neighbor is a better approach for detecting fraudulent transactions than the Logistic Regression and Naïve Bayes.
Results:The accuracy is marginal high in Logistic Regression but the False Positive parameters are not able to identify the imbalanced data; therefore, they disguise the results and accuracy of Logistic Regression and K-Nearest Neighbor deems fit for such cases.
Conclusion: This scheme depicts the automated fraud classification systems using machine learning techni-ques, namely K-Nearest Neighbor, Logistic Regression, and Naive Bayes, to produce a model that can distin-guish valid and invalid credit card transactions.
Originality:Through this research, the most relevant features are used to go through the visualization of accu-racy with the confusion matrix, and accuracy calculations are obtained from the dataset used.
Limitations:Deep learning techniques could have been used to fetch even better results.
Related Results
Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
Enhanced Credit Card Fraud Detection: A Novel Approach Integrating Bayesian Optimized
Random Forest Classifier with Advanced Feature Analysis and Real-time Data Adaptation
Enhanced Credit Card Fraud Detection: A Novel Approach Integrating Bayesian Optimized
Random Forest Classifier with Advanced Feature Analysis and Real-time Data Adaptation
In the financial industry, credit card fraud is a widespread issue that costs both individuals and businesses a lot of money. Using their capacity to spot patterns and abnormalitie...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
CREDIT CARD FRAUD DETECTION USING MACHINE-LEARNING
CREDIT CARD FRAUD DETECTION USING MACHINE-LEARNING
The recent advances of e-commerce and e-payment systems have sparked an increase in financial fraud cases such as credit card fraud. It is therefore crucial to implement mechanisms...
Jaminan Kredit Pada Perjanjian Kredit Sindikasi
Jaminan Kredit Pada Perjanjian Kredit Sindikasi
Credit Guarantee in the Syndicated Bank Credit Agreement is the most important guarantee in the Syndicated Credit Agreement which is the main discussion in this Legal Writing. The ...
Credit Risk Management of Jamuna Bank Limited
Credit Risk Management of Jamuna Bank Limited
Banks are exposed to five core risks through their operation, which are – credit risk, asset/liability risk, foreign exchange risk, internal control & compliance risk, and mone...
Ai Based Credit Scoring System With Dynamic Risk Assessment
Ai Based Credit Scoring System With Dynamic Risk Assessment
Credit cards are now potentially the most popularmode of payment for both offline and onlinepurchases thanks to new developments inelectronic commerce systems andcommunication tech...
Credit Card Fraudulent Transactions Detection Using Machine Learning
Credit Card Fraudulent Transactions Detection Using Machine Learning
With the rapid growth of the e-commerce industry, the use of credit cards for online purchases has increased significantly. Unfortunately, credit card fraud has also become increas...

