Javascript must be enabled to continue!
Multiple Water and Sand Leakage Model Tests for Shield Tunnels
View through CrossRef
Water and sand leakage in shield tunnels has become more of a research interest in recent years. On the other hand, accidents involving underground engineering can take many forms and occur often. These accidents pose a risk to people’s lives as well as their property, and it is imperative that studies on underground engineering catastrophes be conducted without delay. In this paper, a technique for indoor model tests for disaster and erosion in shield tunnels is utilized to investigate the process of crater, water, and sand leakage evolution in shield tunnels. The change in water pressure at the leaking joint is inversely proportional to the magnitude of the water input rate, and the change in soil pressure is inversely proportional to the distance from the leakage joint. Both changes occurred in the same direction. Notably, the soil’s initial effective stress was also considered to maintain compatibility with actual engineering works. The preliminary findings suggest that soil-effective stress may cause erosion resulting in the soil arching effect. Tests with one and two leakage spots were carried out using this foundation. Compared to the scenario where two leakage sites are opened simultaneously, it was discovered that opening the two leakage points one after the other might result in a more extensive erosion area of superposition. The double leakage point test results indicate that the point where leakage occurs first causes another leakage point because the erosion area created when two leakage points are opened successively will be larger than the erosion area created when two leakage points are opened simultaneously. When two leakage points under a tunnel are close to each other, the width and depth of the soil erosion groove under the tunnel caused by the two leakage points leaking one after another are significantly larger than those caused by two leakage points leaking simultaneously and are also substantially larger than a single leakage point. After a leakage disaster occurs in the tunnel, the water and soil pressure near the leakage point will continue to decrease. The closer the leakage point, the greater the reduction. Until the leakage erosion converges, the water and soil pressure will tend to stabilize.
Title: Multiple Water and Sand Leakage Model Tests for Shield Tunnels
Description:
Water and sand leakage in shield tunnels has become more of a research interest in recent years.
On the other hand, accidents involving underground engineering can take many forms and occur often.
These accidents pose a risk to people’s lives as well as their property, and it is imperative that studies on underground engineering catastrophes be conducted without delay.
In this paper, a technique for indoor model tests for disaster and erosion in shield tunnels is utilized to investigate the process of crater, water, and sand leakage evolution in shield tunnels.
The change in water pressure at the leaking joint is inversely proportional to the magnitude of the water input rate, and the change in soil pressure is inversely proportional to the distance from the leakage joint.
Both changes occurred in the same direction.
Notably, the soil’s initial effective stress was also considered to maintain compatibility with actual engineering works.
The preliminary findings suggest that soil-effective stress may cause erosion resulting in the soil arching effect.
Tests with one and two leakage spots were carried out using this foundation.
Compared to the scenario where two leakage sites are opened simultaneously, it was discovered that opening the two leakage points one after the other might result in a more extensive erosion area of superposition.
The double leakage point test results indicate that the point where leakage occurs first causes another leakage point because the erosion area created when two leakage points are opened successively will be larger than the erosion area created when two leakage points are opened simultaneously.
When two leakage points under a tunnel are close to each other, the width and depth of the soil erosion groove under the tunnel caused by the two leakage points leaking one after another are significantly larger than those caused by two leakage points leaking simultaneously and are also substantially larger than a single leakage point.
After a leakage disaster occurs in the tunnel, the water and soil pressure near the leakage point will continue to decrease.
The closer the leakage point, the greater the reduction.
Until the leakage erosion converges, the water and soil pressure will tend to stabilize.
Related Results
Sand Consolidation Preflush Dynamics
Sand Consolidation Preflush Dynamics
Penberthy Jr., W.L., SPE-AIME, Penberthy Jr., W.L., SPE-AIME, Exxon Production Research Co. Shaughnessy, C.M., SPE-AIME, Exxon Production Research Co. Gruesbeck, C., SPE-AIME, Exxo...
Evaluating the Sand-Trapping Efficiency of Sand Fences Using a Combination of Wind-Blown Sand Measurements and UAV Photogrammetry at Tottori Sand Dunes, Japan
Evaluating the Sand-Trapping Efficiency of Sand Fences Using a Combination of Wind-Blown Sand Measurements and UAV Photogrammetry at Tottori Sand Dunes, Japan
Fences are commonly used in coastal regions to control wind-blown sand. Sand-trapping fences and sand-stabilizing fences have been installed at the Tottori Sand Dunes, Tottori Pref...
A Sand Failure Test Can Cut Both Completion Costs And The Number Of Developement Wells
A Sand Failure Test Can Cut Both Completion Costs And The Number Of Developement Wells
Abstract
The objective of this Sand Failure Test was to determine whether initial sand control is necessary on a poorly consolidated gas field, or whether it can ...
Sand Monitoring in Gas Wells: Enhanced Methodology of Sand Sampling via Combination of Online Sand Sampler and Acoustic Sand Monitors to Determine Max Sand Free Rates for Identification of Quick Gain Opportunities and to Quantify Sand Production
Sand Monitoring in Gas Wells: Enhanced Methodology of Sand Sampling via Combination of Online Sand Sampler and Acoustic Sand Monitors to Determine Max Sand Free Rates for Identification of Quick Gain Opportunities and to Quantify Sand Production
Abstract
Sand production from wells are one of the operators’ biggest nightmare as the cascading effect can cause some major harm to the surface equipment as well as...
Study on shield tunnel database on construction data
Study on shield tunnel database on construction data
Shield tunnelling method was used from 1920 in Japan. As the innovation of closed type shield technology around 1970's, the number of shield tunnel constructions in urban area incr...
Sand Control Techniques in Shengli Oilfield
Sand Control Techniques in Shengli Oilfield
ABSTRACT
Shengli Oilfield has been developed for more than twenty years. The problem of sand production has existed since its development. About one third of the tot...
Thermal energy storage with tunnels in different subsurface conditions
Thermal energy storage with tunnels in different subsurface conditions
The widespread use of the underground and global climate change impact the urban subsurface temperature. Changes in the subsurface environment can affect the performance of undergr...
Chemical Sand Consolidation and Through-Tubing Gravel Pack, the Effective Alternative Sand Control Methods in Zawtika Field
Chemical Sand Consolidation and Through-Tubing Gravel Pack, the Effective Alternative Sand Control Methods in Zawtika Field
Abstract
Sand production has been highlighted as one of the critical challenges for Zawtika Project. Throughout the years of field experiences, sand production manag...


