Javascript must be enabled to continue!
Global DNA methylation and gene expression analysis in pre-B cell acute lymphoblastic leukemia
View through CrossRef
Acute lymphoblastic leukemia (ALL) is a hematological cancer associated with precursor B-cells and is the most common cancer diagnosed in children under the age of 15. Our complete understanding of all mechanisms responsible for ALL induction is inadequate. DNA methylation is an epigenetic modification and is accountable for regulating gene expression and plays a significant role in hematopoiesis. In addition to genomic rearrangements and hyperdiploidy, other mechanisms like alteration of DNA methylation may be involved in ALL pathogenesis. Therefore, the identification of altered DNA methylation on key regulatory regions of the genome is critical to gaining a better understanding of ALL pathogenesis. This dissertation identified the dynamic establishment of DNA methylation during normal B-cell development, and alterations of DNA methylation in the pathogenesis of ALL. First, a protocol to isolate the subsets of precursor B-cells from human umbilical cord blood (HCB) was developed. Using this protocol, we were able to isolate sufficient numbers of pro-B, pre-BI, pre-BII and naive B-cells from a single HCB unit. This method can be adapted for any type of cell present in HCB at any stage of differentiation. Next, genome-wide DNA methylation profiles using the methylated CpG island recovery assay followed by next generation sequencing (MIRA-seq) were generated for each of the four subsets of precursor B-cells. We report for the first time that gaining of DNA methylation in certain regions of genome were associated with the transition of pro-B to pre-BI cells. Differentially methylated regions were identified and the majority of the regions were present within intronic and intergenic regions that harbor putative regulatory elements. The development of methylation profiles in normal precursor B-cells will aid in revealing the role of altered DNA methylation in the pathogenesis of precursor B-cell related disorders including ALL. In order to identify epigenetic alterations in ALL, we next determined the differentially methylated regions (DMRs) between ALL and healthy precursor B-cells. Further, whole genome genes expression analysis was performed to determine the regulatory potential of the DMRs. Our studies identified ALL specific epigenetically deregulated genes, novel putative enhancers, and biological pathways that showed concurrent DNA methylation and changes in gene expression during malignant transformation. These altered epigenetic marks could be used as prospective biomarkers for ALL and/or as potential targets to reset the altered DNA methylation in order to modify gene expression which may enhance the present treatment protocol for ALL and eventually improve patient outcome."
Title: Global DNA methylation and gene expression analysis in pre-B cell acute lymphoblastic leukemia
Description:
Acute lymphoblastic leukemia (ALL) is a hematological cancer associated with precursor B-cells and is the most common cancer diagnosed in children under the age of 15.
Our complete understanding of all mechanisms responsible for ALL induction is inadequate.
DNA methylation is an epigenetic modification and is accountable for regulating gene expression and plays a significant role in hematopoiesis.
In addition to genomic rearrangements and hyperdiploidy, other mechanisms like alteration of DNA methylation may be involved in ALL pathogenesis.
Therefore, the identification of altered DNA methylation on key regulatory regions of the genome is critical to gaining a better understanding of ALL pathogenesis.
This dissertation identified the dynamic establishment of DNA methylation during normal B-cell development, and alterations of DNA methylation in the pathogenesis of ALL.
First, a protocol to isolate the subsets of precursor B-cells from human umbilical cord blood (HCB) was developed.
Using this protocol, we were able to isolate sufficient numbers of pro-B, pre-BI, pre-BII and naive B-cells from a single HCB unit.
This method can be adapted for any type of cell present in HCB at any stage of differentiation.
Next, genome-wide DNA methylation profiles using the methylated CpG island recovery assay followed by next generation sequencing (MIRA-seq) were generated for each of the four subsets of precursor B-cells.
We report for the first time that gaining of DNA methylation in certain regions of genome were associated with the transition of pro-B to pre-BI cells.
Differentially methylated regions were identified and the majority of the regions were present within intronic and intergenic regions that harbor putative regulatory elements.
The development of methylation profiles in normal precursor B-cells will aid in revealing the role of altered DNA methylation in the pathogenesis of precursor B-cell related disorders including ALL.
In order to identify epigenetic alterations in ALL, we next determined the differentially methylated regions (DMRs) between ALL and healthy precursor B-cells.
Further, whole genome genes expression analysis was performed to determine the regulatory potential of the DMRs.
Our studies identified ALL specific epigenetically deregulated genes, novel putative enhancers, and biological pathways that showed concurrent DNA methylation and changes in gene expression during malignant transformation.
These altered epigenetic marks could be used as prospective biomarkers for ALL and/or as potential targets to reset the altered DNA methylation in order to modify gene expression which may enhance the present treatment protocol for ALL and eventually improve patient outcome.
".
Related Results
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract
A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
Myosin-IIa Is Required for Leukemia Cell Extravasation and Its Inhibition Reduces Leukemia Dissemination and Prolongs Survival in a Mouse Model of Acute Lymphoblastic Leukemia
Myosin-IIa Is Required for Leukemia Cell Extravasation and Its Inhibition Reduces Leukemia Dissemination and Prolongs Survival in a Mouse Model of Acute Lymphoblastic Leukemia
Abstract
Background: Leukemia affects approximately 45,000 people each year in the USA with more than 20,000 fatalities. Many leukemia patients experience initial re...
Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation
Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation
Abstract
Background
DNA methylation is an important type of epigenetic modification involved in gene regulation. Although strong DNA...
Clinical Implications of Germline Predisposition Gene Variants in Patients with Refractory or Relapsed B Acute Lymphoblastic Leukemia
Clinical Implications of Germline Predisposition Gene Variants in Patients with Refractory or Relapsed B Acute Lymphoblastic Leukemia
Objectives:Gene variants are important factors in prognosis of the patients with hematological malignancies. In current study, our team investigate the relationship between blood a...
STAT3 Mutations in Large Granular Lymphocytic Leukemia
STAT3 Mutations in Large Granular Lymphocytic Leukemia
Abstract
Abstract 1606
Introduction:
Large granular lymphocytic leukemia (LGL leukemia) is a rare lymphoprolifera...
Abstract 2094: Correaltions between genome-wide DNA methylation profiles and genomic driver aberrations during multistage lung adenocaricinogenesis
Abstract 2094: Correaltions between genome-wide DNA methylation profiles and genomic driver aberrations during multistage lung adenocaricinogenesis
Abstract
The aim of this study was to clarify correlations between epigenomic and genomic alterations during multistage lung adenocarcinogenesis. Single-CpG resoluti...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract
Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...


