Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Beyond Intensity Imaging: Dissipative Equilibrium of NADH/NAD⁺ as a Metabolic Sensor for Ischemic Response in Cardiac Tissue

View through CrossRef
Abstract The conversion of nicotinamide adenine dinucleotide (NAD⁺) to its reduced form (NADH) by dehydrogenases is a key step in numerous redox reactions and, consequently, in cellular energy conversion. NADH autofluorescence imaging represents a promising method for the optical detection of metabolic dysfunction in living tissues. However, it is sensitive to the total NAD(H) content as well as to variations in absorption and light scattering, which may fluctuate independently. A major objective is therefore to identify invariant quantities that are responsive to reversible ischemic tissue injury while circumventing the limitations of intensity-based imaging. We show experimentally and in silico that glutamate dehydrogenase drives the NAD⁺/NADH balance toward a dissipative equilibrium when an external catalytic process promotes the NADH → NAD⁺ conversion. This dissipative equilibrium state is uniquely determined by the total NAD(H) pool, the GDH concentration, and the external catalytic activity. Experimental validation using UV-induced NADH photolysis (300–500 mW/cm²) implementing the NADH → NAD⁺ reaction showed that GDH activity can be estimated in the epicardium of ex vivo Langendorff-perfused hearts by analyzing the dissipative equilibrium. These results present a new approach to optical assessment of tissue metabolic activity based on autofluorescence imaging of NADH. Our method allows assessment of cardiac tissue ischemia without knowledge of the photolysis rate, thereby overcoming the inherent limitations of optical detection in living tissues.
Title: Beyond Intensity Imaging: Dissipative Equilibrium of NADH/NAD⁺ as a Metabolic Sensor for Ischemic Response in Cardiac Tissue
Description:
Abstract The conversion of nicotinamide adenine dinucleotide (NAD⁺) to its reduced form (NADH) by dehydrogenases is a key step in numerous redox reactions and, consequently, in cellular energy conversion.
NADH autofluorescence imaging represents a promising method for the optical detection of metabolic dysfunction in living tissues.
However, it is sensitive to the total NAD(H) content as well as to variations in absorption and light scattering, which may fluctuate independently.
A major objective is therefore to identify invariant quantities that are responsive to reversible ischemic tissue injury while circumventing the limitations of intensity-based imaging.
We show experimentally and in silico that glutamate dehydrogenase drives the NAD⁺/NADH balance toward a dissipative equilibrium when an external catalytic process promotes the NADH → NAD⁺ conversion.
This dissipative equilibrium state is uniquely determined by the total NAD(H) pool, the GDH concentration, and the external catalytic activity.
Experimental validation using UV-induced NADH photolysis (300–500 mW/cm²) implementing the NADH → NAD⁺ reaction showed that GDH activity can be estimated in the epicardium of ex vivo Langendorff-perfused hearts by analyzing the dissipative equilibrium.
These results present a new approach to optical assessment of tissue metabolic activity based on autofluorescence imaging of NADH.
Our method allows assessment of cardiac tissue ischemia without knowledge of the photolysis rate, thereby overcoming the inherent limitations of optical detection in living tissues.

Related Results

Sex-related differences in human plasma NAD+/NADH levels depend on age
Sex-related differences in human plasma NAD+/NADH levels depend on age
Abstract Nicotinamide adenine dinucleotide (NAD) is a coenzyme in metabolic reactions and cosubstrate in signaling pathways of cells. While the intracellular functio...
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
Elevation of NAD+ by nicotinamide riboside spares spinal cord tissue from injury and promotes locomotor recovery
Elevation of NAD+ by nicotinamide riboside spares spinal cord tissue from injury and promotes locomotor recovery
ABSTRACTSpinal cord injury (SCI)-induced tissue damage spreads to neighboring spared cells in the hours, days and weeks following injury leading to exacerbation of tissue damage an...
SUMMARY
SUMMARY
SUMMARYThe purpose of the present monograph is to give an account of the distribution of fibrinolytic components in the organism, with special reference to the tissue activator of ...
Mediator kinase submodule-dependent regulation of cardiac transcription
Mediator kinase submodule-dependent regulation of cardiac transcription
<p>Pathological cardiac remodeling results from myocardial stresses including pressure and volume overload, neurohumoral activation, myocardial infarction, and hypothyroidism...
Harmonizing and Optimizing CT Perfusion Stroke Imaging
Harmonizing and Optimizing CT Perfusion Stroke Imaging
This thesis focuses on harmonizing and optimizing CT perfusion (CTP) imaging for stroke. CTP imaging can help select patients with ischemic stroke for thrombectomy. However, due to...
Immunochemical probing of the structure and cofactor of NADH dehydrogenase from Paracoccus denitrificans
Immunochemical probing of the structure and cofactor of NADH dehydrogenase from Paracoccus denitrificans
Monospecific antibody to the respiratory NADH dehydrogenase from Paracoccus denitrificans was prepared by using as antigen specific immunoprecipitates containing NADH dehydrogenase...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...

Back to Top