Javascript must be enabled to continue!
Relativistic Equation Failure for LIGO Signals
View through CrossRef
Abstract
Signal waves of the monotone increasing frequency detected by LIGO are universally considered to be gravitational waves of spiral binary stars, and the general theory of relativity is thus universally considered to have been confirmed by the experiments. Here we present a universal method for signal wave spectrum analysis, introducing the true conclusions of numerical calculation and image analysis of GW150914 signal wave. Firstly, numerical calculation results of GW150914 signal wave frequency change rate obey the com quantization law which needs to be accurately described by integers, and there is an irreconcilable difference between the results and the generalized relativistic frequency equation of the gravitational wave. Secondly, the assignment of the frequency and frequency change rate of GW10914 signal wave to the generalized relativistic frequency equation of gravitational wave constructs a non-linear equation group about the mass of wave source, and the computer image solution shows that the equation group has no GW10914 signal wave solution. Thirdly, it is not unique to calculate the chirp mass of the wave source from the different frequencies and change rates of the numerical relativistic waveform of the GW150914 signal wave, and the numerical relativistic waveform of the GW150914 signal wave deviates too far from the original waveform actually. Other LIGO signal waveforms do not have obvious characteristics of gravitational frequency variation of spiral binary stars and lack precise data, so they cannot be used for numerical analysis and image solution. Therefore, LIGO signals represented by gw50914 signal do not support the relativistic gravitational wave frequency equation. However, whether gravitational wave signals from spiral binaries that may be detected in the future follow the same co quantization law? The answer is not clear at present.
Title: Relativistic Equation Failure for LIGO Signals
Description:
Abstract
Signal waves of the monotone increasing frequency detected by LIGO are universally considered to be gravitational waves of spiral binary stars, and the general theory of relativity is thus universally considered to have been confirmed by the experiments.
Here we present a universal method for signal wave spectrum analysis, introducing the true conclusions of numerical calculation and image analysis of GW150914 signal wave.
Firstly, numerical calculation results of GW150914 signal wave frequency change rate obey the com quantization law which needs to be accurately described by integers, and there is an irreconcilable difference between the results and the generalized relativistic frequency equation of the gravitational wave.
Secondly, the assignment of the frequency and frequency change rate of GW10914 signal wave to the generalized relativistic frequency equation of gravitational wave constructs a non-linear equation group about the mass of wave source, and the computer image solution shows that the equation group has no GW10914 signal wave solution.
Thirdly, it is not unique to calculate the chirp mass of the wave source from the different frequencies and change rates of the numerical relativistic waveform of the GW150914 signal wave, and the numerical relativistic waveform of the GW150914 signal wave deviates too far from the original waveform actually.
Other LIGO signal waveforms do not have obvious characteristics of gravitational frequency variation of spiral binary stars and lack precise data, so they cannot be used for numerical analysis and image solution.
Therefore, LIGO signals represented by gw50914 signal do not support the relativistic gravitational wave frequency equation.
However, whether gravitational wave signals from spiral binaries that may be detected in the future follow the same co quantization law? The answer is not clear at present.
Related Results
Relativistic Equation Failure for LIGO Signals
Relativistic Equation Failure for LIGO Signals
Signal waves of the monotone increasing frequency detected by LIGO are universally considered to be gravitational waves of spiral binary stars, and the general theory of relativity...
Relativistic Equation Failure for LIGO Signals
Relativistic Equation Failure for LIGO Signals
Signal waves of the monotone increasing frequency detected by LIGO are universally considered to be gravitational waves of spiral binary stars, and the general theory of relativity...
Reply to Comment on ‘Bulk properties of nuclear matter in a modified relativistic Dirac formalism’
Reply to Comment on ‘Bulk properties of nuclear matter in a modified relativistic Dirac formalism’
Abstract
We sincerely thank the Editorial Board for forwarding the comments regarding our published paper [Panda
et al
...
The effective relativistic coupling by asymptotic representation approach for molecules with multiple relativistic atoms
The effective relativistic coupling by asymptotic representation approach for molecules with multiple relativistic atoms
The Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach is a method to generate fully coupled diabatic potential energy surfaces (PESs) including relativi...
Relativistic Hydrodynamics
Relativistic Hydrodynamics
AbstractThe book provides a lively and approachable introduction to the main concepts and techniques of relativistic hydrodynamics in a form which will appeal to physicists at adva...
Combined mean field limit and non-relativistic limit of Vlasov–Maxwell particle system to Vlasov–Poisson system
Combined mean field limit and non-relativistic limit of Vlasov–Maxwell particle system to Vlasov–Poisson system
In this paper, we consider the mean field limit and non-relativistic limit of the relativistic Vlasov–Maxwell particle system to the Vlasov–Poisson equation. With the relativistic ...
The waveform comparison of three common-used fractional viscous acoustic wave equations
The waveform comparison of three common-used fractional viscous acoustic wave equations
Abstract
The forward simulation of the viscous acoustic wave equation is an essential part of geophysics and energy resources exploration research. The viscous acoustic sei...
Long-range superharmonic Josephson current and spin-triplet pairing correlations in a junction with ferromagnetic bilayers
Long-range superharmonic Josephson current and spin-triplet pairing correlations in a junction with ferromagnetic bilayers
AbstractThe long-range spin-triplet supercurrent transport is an interesting phenomenon in the superconductor/ferromagnet ("Equation missing") heterostructure containing noncolline...

