Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Physicomechanical Properties of Mortars Based On Ordinary Portland Cement with Bauxite as Mineral Additives

View through CrossRef
Guinea has one of the world's main reserves of bauxite that can be used as an industrial mineral to produce low-cost building materials and other parts to address the housing and industrial development difficulties in this country. In this line, mortars were manufactured by replacing 5–25 wt.% of Portland cement with raw and 600 °C calcined. Workability and setting time of fresh mortars were measured. Hard products were characterized by linear shrinkage, porosity, and structural and microstructural investigations. The two mineral additives are chemically active since they favored the reduction of the workability and setting time of mortars. In the case of calcined bauxite, ettringite and monosulfoaluminate coexisted regardless of the rate of substitution due to the higher reactivity of alumina, whereas, for raw bauxite, ettringite is only found at 5 and 10 wt.%. Heterogeneous microstructures and increased porosity were revealed with the rate of cement replacement for raw bauxite, whereas for calcined bauxite, the porosity decreased. Even the minimum compressive strengths of both series of mortars, 13 MPa for raw bauxite and 17 MPa for calcined one, enabled their application as construction materials. Favouring the porosity increase, raw bauxite is more appropriate for applications using porous materials.
Title: Physicomechanical Properties of Mortars Based On Ordinary Portland Cement with Bauxite as Mineral Additives
Description:
Guinea has one of the world's main reserves of bauxite that can be used as an industrial mineral to produce low-cost building materials and other parts to address the housing and industrial development difficulties in this country.
In this line, mortars were manufactured by replacing 5–25 wt.
% of Portland cement with raw and 600 °C calcined.
Workability and setting time of fresh mortars were measured.
Hard products were characterized by linear shrinkage, porosity, and structural and microstructural investigations.
The two mineral additives are chemically active since they favored the reduction of the workability and setting time of mortars.
In the case of calcined bauxite, ettringite and monosulfoaluminate coexisted regardless of the rate of substitution due to the higher reactivity of alumina, whereas, for raw bauxite, ettringite is only found at 5 and 10 wt.
%.
Heterogeneous microstructures and increased porosity were revealed with the rate of cement replacement for raw bauxite, whereas for calcined bauxite, the porosity decreased.
Even the minimum compressive strengths of both series of mortars, 13 MPa for raw bauxite and 17 MPa for calcined one, enabled their application as construction materials.
Favouring the porosity increase, raw bauxite is more appropriate for applications using porous materials.

Related Results

The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
The cement-bone bond is weaker than cement-cement bond in cement-in-cement revision arthroplasty. A comparative biomechanical study
This study compares the strength of the native bone-cement bond and the old-new cement bond under cyclic loading, using third generation cementing technique, rasping and contaminat...
Real-Time Distributed Fiber Optic Sensing for Cement Sheath Integrity Monitoring
Real-Time Distributed Fiber Optic Sensing for Cement Sheath Integrity Monitoring
ABSTRACT: The integrity of cement sheath is critical to oil and gas effective extraction, in which the cement displacement efficiency and solidify quality are the...
FLY ASH FOUNDATION REINFORCED BY CEMENT–SOIL MIXING PILES
FLY ASH FOUNDATION REINFORCED BY CEMENT–SOIL MIXING PILES
Cement-soil mixing piles have been commonly used to enhance the bearing capacity of fly ash stratum and mitigate the settlement damage to the surrounding environment. However, only...
Cement Evaluation - A Risky Business
Cement Evaluation - A Risky Business
Abstract Cement evaluation is commonly thought of as running a cement bond log (CBL) and attempting to interpret the results to determine if there is isolation in th...
Experiment Study of Stress and Pore Pressure in Setting Cement Paste
Experiment Study of Stress and Pore Pressure in Setting Cement Paste
ABSTRACT: Cement sheath integrity plays an important role in ensuring the wellbore safety. Shear failure, tensile crack or debonding may happen in the cement shea...
An experimental study on the upgrade of sulfoaluminate—belite cement systems by blending with Portland cement
An experimental study on the upgrade of sulfoaluminate—belite cement systems by blending with Portland cement
Blends consisting of sulfoaluminate—belite (SAB) cements and Portland cement (PC) (CEM I 42·5) were tested. The initial set of PC was 3 h 10 min, of SAB-1 cement 10 min and of SAB-...
Compressive Strength of Concrete with Nano Cement
Compressive Strength of Concrete with Nano Cement
Nano technology plays a very vital role in all the areas of research. The incorporation of nano materials in concrete offers many advantages and improves the workability, the stren...

Back to Top