Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A parametric study of titanium silicide formation by rapid thermal processing

View through CrossRef
A parametric study of titanium silicide formation by rapid thermal processing was conducted to determine the effects of annealing temperature (650 °C, 750 °C), annealing time (30 s, 60 s), wet etching (no HF dip, with HF dip), sputter etching (no sputter etch, with sputter etch), and annealing ambient (Ar, N2) on the completeness of conversion of 60 nm Ti on (111)-Si to C54–TiSi2 based on sheet resistance and the uniformity of the sheet resistance measurements across the entire wafer. Statistical analysis of the results showed that temperature, annealing ambient, and sputter etching had the greatest influence. Increasing the temperature and using argon gas instead of nitrogen promoted conversion of the film to C54–TiSi2. On the other hand, sputter etching retarded it. The results also indicated significant interactions among these factors. The best uniformity in sheet resistance was obtained by annealing at 750 °C without sputter etching. The different sheet resistance profiles showed gradients that were consistent with expected profile behaviors, arising from temperature variations across the wafer due to the effect of a flowing cold gas and the effects of the wafer edge and flats.
Title: A parametric study of titanium silicide formation by rapid thermal processing
Description:
A parametric study of titanium silicide formation by rapid thermal processing was conducted to determine the effects of annealing temperature (650 °C, 750 °C), annealing time (30 s, 60 s), wet etching (no HF dip, with HF dip), sputter etching (no sputter etch, with sputter etch), and annealing ambient (Ar, N2) on the completeness of conversion of 60 nm Ti on (111)-Si to C54–TiSi2 based on sheet resistance and the uniformity of the sheet resistance measurements across the entire wafer.
Statistical analysis of the results showed that temperature, annealing ambient, and sputter etching had the greatest influence.
Increasing the temperature and using argon gas instead of nitrogen promoted conversion of the film to C54–TiSi2.
On the other hand, sputter etching retarded it.
The results also indicated significant interactions among these factors.
The best uniformity in sheet resistance was obtained by annealing at 750 °C without sputter etching.
The different sheet resistance profiles showed gradients that were consistent with expected profile behaviors, arising from temperature variations across the wafer due to the effect of a flowing cold gas and the effects of the wafer edge and flats.

Related Results

Tungsten silicide Schottky contacts on GaAs
Tungsten silicide Schottky contacts on GaAs
Two types of I–V characteristics for W–Si/GaAs Schottky contacts have been observed. With sputtering deposition from a W–Si composite target (type A), The Schottky contacts have a ...
Silicide Thermoelectrics: Materials for Energy Harvesting
Silicide Thermoelectrics: Materials for Energy Harvesting
The silicide family of thermoelectrics includes more than 15 compounds, among them are semimetals and semiconductors with band gaps ranging from 0.1 to 2.3 eV. The silicides have o...
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements 
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements 
NASA's Europa Clipper mission will characterize the current and recent surface activity of the icy-moon Europa through a wide range of remote sensing observations. In particular, t...
15th World Conference on Titanium Chapter 2: Aerospace Applications
15th World Conference on Titanium Chapter 2: Aerospace Applications
RECENT ADVANCES IN TITANIUM ALLOY EXTRUSIONS FOR AEROSPACE APPLICATIONS TECHNOLOGY CAPABILITY STUDY OF LASER POWDER BED FUSION TO PRODUCE LARGE CRITICAL AEROSPACE S...
A novel volumetric method for quantitation of titanium dioxide in cosmetics
A novel volumetric method for quantitation of titanium dioxide in cosmetics
Nowadays there are many sun‐protection cosmetics incorporating organic or inorganic UV filters as active ingredients. Chemically stable inorganic sunscreen agents, usually metal ox...
Variable Thermal Conductivity Metamaterials Applied to Passive Thermal Control of Satellites
Variable Thermal Conductivity Metamaterials Applied to Passive Thermal Control of Satellites
Abstract Active materials like the proposed variable thermal conductivity metamaterial enable new thermal designs and low-cost, low-power, passive thermal control. T...
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
<sec>Gallium nitride chips are widely used in high-frequency and high-power devices. However, thermal management is a serious challenge for gallium nitride devices. To improv...
Characterisation and Wettability Properties of Anodised Titanium in Sulphuric Acid for Biomedical Application
Characterisation and Wettability Properties of Anodised Titanium in Sulphuric Acid for Biomedical Application
Anodic oxidation is an effective method to modify the smooth surface (bioinert) of titanium to rough or porous surface (bioactive) to be able the titanium to be used as artificial ...

Back to Top