Javascript must be enabled to continue!
Electroacupuncture at Fengchi(GB20) and Yanglingquan(GB34) Ameliorates Paralgesia through Microglia-Mediated Neuroinflammation in a Rat Model of Migraine
View through CrossRef
Background: Multiple studies have suggested that paralgesia (hyperalgesia and cutaneous allodynia) in migraine reflects the activation and sensitisation of the trigeminovascular system (TGVS). In particular, it reflects the second-order and higher nerve centre sensitisation, which is caused and maintained by neuroinflammation. Microglia activation leads to the release of proinflammatory cytokines involved in inflammatory responses. Accumulating evidence indicates that electroacupuncture (EA) is effective in ameliorating paralgesia, but the underlying mechanisms of EA in migraine attacks caused by microglia and microglia-mediated inflammatory responses are still unclear. The purpose of this study was to explore whether EA could ameliorate the dysregulation of pain sensation by suppressing microglial activation and the resulting neuroinflammatory response, and to evaluate whether this response was regulated by Toll-like receptor 4 (TLR4)/nuclear factor-kappa B(NF-κB) in the trigeminal nucleus caudalis (TNC) in a rat model of migraine. Methods: Repeated Inflammatory Soup (IS) was infused into the dura for seven sessions to establish a recurrent migraine-like rat model, and EA treatment was administered at Fengchi (GB20) and Yanglingquan (GB34) after daily IS infusion. Facial mechanical withdrawal thresholds were measured to evaluate the change in pain perception, and plasma samples and the TNC tissues of rats were collected to examine the changes in calcitonin gene-related peptide (CGRP), the Ibal-1-labelled microglial activation, and the resulting inflammatory response, including interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and their regulatory molecules TLR4/NF-κB, via enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and Western blot analysis. Results: Repeated IS injections into the dura induced facial mechanical paralgesia, which is the manifestation of migraine attacks, and increased the expression of CGRP, Ibal-1, microglial mediated inflammatory cytokines (IL-1β, TNF-α, IL-6), and regulatory molecules TLR4/NF-κB. EA at GB20/34 significantly attenuated repetitive IS-induced pain hypersensitivity. This effect was consistent with decreased levels of CGRP and inflammatory cytokines in the plasma and the TNC via the inhibition of microglia activation, and this response may be regulated by TLR4/NF-κB. Conclusions: EA ameliorated paralgesia in repetitive IS-induced migraine-like rats, which was mainly mediated by a reduction in microglial activation and microglial-mediated inflammatory responses that could be regulated by TLR4/NF-κB.
Title: Electroacupuncture at Fengchi(GB20) and Yanglingquan(GB34) Ameliorates Paralgesia through Microglia-Mediated Neuroinflammation in a Rat Model of Migraine
Description:
Background: Multiple studies have suggested that paralgesia (hyperalgesia and cutaneous allodynia) in migraine reflects the activation and sensitisation of the trigeminovascular system (TGVS).
In particular, it reflects the second-order and higher nerve centre sensitisation, which is caused and maintained by neuroinflammation.
Microglia activation leads to the release of proinflammatory cytokines involved in inflammatory responses.
Accumulating evidence indicates that electroacupuncture (EA) is effective in ameliorating paralgesia, but the underlying mechanisms of EA in migraine attacks caused by microglia and microglia-mediated inflammatory responses are still unclear.
The purpose of this study was to explore whether EA could ameliorate the dysregulation of pain sensation by suppressing microglial activation and the resulting neuroinflammatory response, and to evaluate whether this response was regulated by Toll-like receptor 4 (TLR4)/nuclear factor-kappa B(NF-κB) in the trigeminal nucleus caudalis (TNC) in a rat model of migraine.
Methods: Repeated Inflammatory Soup (IS) was infused into the dura for seven sessions to establish a recurrent migraine-like rat model, and EA treatment was administered at Fengchi (GB20) and Yanglingquan (GB34) after daily IS infusion.
Facial mechanical withdrawal thresholds were measured to evaluate the change in pain perception, and plasma samples and the TNC tissues of rats were collected to examine the changes in calcitonin gene-related peptide (CGRP), the Ibal-1-labelled microglial activation, and the resulting inflammatory response, including interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and their regulatory molecules TLR4/NF-κB, via enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and Western blot analysis.
Results: Repeated IS injections into the dura induced facial mechanical paralgesia, which is the manifestation of migraine attacks, and increased the expression of CGRP, Ibal-1, microglial mediated inflammatory cytokines (IL-1β, TNF-α, IL-6), and regulatory molecules TLR4/NF-κB.
EA at GB20/34 significantly attenuated repetitive IS-induced pain hypersensitivity.
This effect was consistent with decreased levels of CGRP and inflammatory cytokines in the plasma and the TNC via the inhibition of microglia activation, and this response may be regulated by TLR4/NF-κB.
Conclusions: EA ameliorated paralgesia in repetitive IS-induced migraine-like rats, which was mainly mediated by a reduction in microglial activation and microglial-mediated inflammatory responses that could be regulated by TLR4/NF-κB.
Related Results
Effect of Electroacupuncture at Fengchi on Facial Allodynia, Microglial Activation, and Microglia–Neuron Interaction in a Rat Model of Migraine
Effect of Electroacupuncture at Fengchi on Facial Allodynia, Microglial Activation, and Microglia–Neuron Interaction in a Rat Model of Migraine
The purpose of the work was to investigate whether electroacupuncture (EA) could ameliorate migraine central sensitization by modulating microglial activation and the subsequent re...
Efektifitas Terapi Akupunktur Menggunakan Kombinasi Titik Zusanli (ST36), Titik Sanyinjiao (SP6), Titik Yanglingquan (GB34) Dan Titik Taixi (KI3) Untuk Penurunan Nyeri Pada Osteoarthritis Di Griya Sehat Prima Hati Surakarta
Efektifitas Terapi Akupunktur Menggunakan Kombinasi Titik Zusanli (ST36), Titik Sanyinjiao (SP6), Titik Yanglingquan (GB34) Dan Titik Taixi (KI3) Untuk Penurunan Nyeri Pada Osteoarthritis Di Griya Sehat Prima Hati Surakarta
Abstract : Osteoarthritis, The Point Of Sanyinjiao (SP6), The Point Of Taixi (KI3), Yanglingquan (GB34), And Point Zusanli (ST36). Osteoarthritis (OA) is a degenerative disorder th...
Dysfunction of a Peripheral Lipid Sensor Gpr120 Causes Pgd2-microglia-provoked Neuroinflammation
Dysfunction of a Peripheral Lipid Sensor Gpr120 Causes Pgd2-microglia-provoked Neuroinflammation
Abstract
Background Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and the secretion of proinf...
Atrial fibrillation and migraine with aura in young adults with ischemic stroke
Atrial fibrillation and migraine with aura in young adults with ischemic stroke
Background Migraine is associated with an increased risk of ischemic stroke. The associations are stronger in migraine with aura than in migraine without aura, in women than in men...
Vestibular Migraine in Adolescents
Vestibular Migraine in Adolescents
Migraine is a recurrent throbbing headache that affects one side of the head and is usually related to nausea and decreased vision. Migraine is typically seen in adolescents due to...
Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase–1 expression in murine microglia by glioma-derived soluble factors
Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase–1 expression in murine microglia by glioma-derived soluble factors
Object
Microglia are one of the members of monocyte/macrophage lineage in the central nervous system (CNS) and exist as ramified microglia in a normal resting state, but they are a...
Neuroinflammation-induced neurodegeneration and associated microglia activation in Parkinson’s disease: a novel neurotherapeutic avenue
Neuroinflammation-induced neurodegeneration and associated microglia activation in Parkinson’s disease: a novel neurotherapeutic avenue
Parkinson’s disease (PD) is classified as one type of neurodegenerative disorder. Movement disorder, which includes resting tremors and slowness of movement, is a common clinical s...
A peripheral lipid sensor GPR120 remotely contributes to suppression of PGD2-microglia-provoked neuroinflammation and neurodegeneration in the mouse hippocampus
A peripheral lipid sensor GPR120 remotely contributes to suppression of PGD2-microglia-provoked neuroinflammation and neurodegeneration in the mouse hippocampus
Abstract
Background
Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and...

