Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics

View through CrossRef
Optimizing network structure to promote information propagation has been a key issue in the research field of complex network, and both clustering and diffusion characteristics of edges in a network play a very important role in information propagation. K-truss decomposition is an algorithm for identifying the most influential nodes in the network. We find that K-truss decomposition only considers edge clustering characteristics, without considering the diffusion characteristics, so it is easily affected by the local clustering structure in the network, such as core-like groups. There are mutually closely connected the core-like groups in the network, but the correlation between the core-like groups and the other parts of the network is less, so the information is easy to spread in the core-like groups, but not in the other parts of the network, nor over the whole network. For the reason, we propose an index to measure the edge diffusion characteristics in a network, and it is found that the diffusion characteristics of some edges in the periphery of the network are relatively high, but the clustering characteristics of these edges are relatively low, so they are not beneficial for rapid information propagation. In this paper, by considering the relationship between the clustering characteristics and diffusion characteristics of the edges, we propose a novel network structure optimization algorithm for information propagation. By measuring the comprehensive ability strength of the clustering characteristics and the diffusion characteristics of the edges, we can filter out the edges whose comprehensive ability is poor in the network, then determine whether the edges should be optimized according to the relative relationship between the clustering characteristics and the diffusion characteristics of the edges. To prove the effectiveness of the proposed algorithm, it is carried out to optimize the structures of four real networks, and verify the effective range of information propagation before and after the optimization of network structure from the classical independent cascade model. The results show that the network topology optimized by the proposed algorithm can effectively increase the range of information propagation. Moreover, the number of leaf nodes in the optimized network is reduced, and the clustering coefficient and the average path length are also reduced.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics
Description:
Optimizing network structure to promote information propagation has been a key issue in the research field of complex network, and both clustering and diffusion characteristics of edges in a network play a very important role in information propagation.
K-truss decomposition is an algorithm for identifying the most influential nodes in the network.
We find that K-truss decomposition only considers edge clustering characteristics, without considering the diffusion characteristics, so it is easily affected by the local clustering structure in the network, such as core-like groups.
There are mutually closely connected the core-like groups in the network, but the correlation between the core-like groups and the other parts of the network is less, so the information is easy to spread in the core-like groups, but not in the other parts of the network, nor over the whole network.
For the reason, we propose an index to measure the edge diffusion characteristics in a network, and it is found that the diffusion characteristics of some edges in the periphery of the network are relatively high, but the clustering characteristics of these edges are relatively low, so they are not beneficial for rapid information propagation.
In this paper, by considering the relationship between the clustering characteristics and diffusion characteristics of the edges, we propose a novel network structure optimization algorithm for information propagation.
By measuring the comprehensive ability strength of the clustering characteristics and the diffusion characteristics of the edges, we can filter out the edges whose comprehensive ability is poor in the network, then determine whether the edges should be optimized according to the relative relationship between the clustering characteristics and the diffusion characteristics of the edges.
To prove the effectiveness of the proposed algorithm, it is carried out to optimize the structures of four real networks, and verify the effective range of information propagation before and after the optimization of network structure from the classical independent cascade model.
The results show that the network topology optimized by the proposed algorithm can effectively increase the range of information propagation.
Moreover, the number of leaf nodes in the optimized network is reduced, and the clustering coefficient and the average path length are also reduced.

Related Results

The Kernel Rough K-Means Algorithm
The Kernel Rough K-Means Algorithm
Background: Clustering is one of the most important data mining methods. The k-means (c-means ) and its derivative methods are the hotspot in the field of clustering research in re...
MR-DBIFOA: a parallel Density-based Clustering Algorithm by Using Improve Fruit Fly Optimization
MR-DBIFOA: a parallel Density-based Clustering Algorithm by Using Improve Fruit Fly Optimization
<p>Clustering is an important technique for data analysis and knowledge discovery. In the context of big data, the density-based clustering algorithm faces three challenging ...
Parallel density clustering algorithm based on MapReduce and optimized cuckoo algorithm
Parallel density clustering algorithm based on MapReduce and optimized cuckoo algorithm
In the process of parallel density clustering, the boundary points of clusters with different densities are blurred and there is data noise, which affects the clustering performanc...
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Abstract. The central thesis of the authors’ paper is that macroscopic water vapor diffusion is not enhanced in snow compared to diffusion through humid air alone. Further, mass di...
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
The project aims at the design and development of six hybrid nature inspired algorithms based on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm ...
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
Modeling Hybrid Metaheuristic Optimization Algorithm for Convergence Prediction
The project aims at the design and development of six hybrid nature inspired algorithms based on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm ...
Near-neighbor Propagation Clustering Algorithm Based on Cuckoo Search
Near-neighbor Propagation Clustering Algorithm Based on Cuckoo Search
In this paper, a nearest neighbor propagation clustering algorithm (CSB-AP) based on cuckoo search is proposed to solve the problem of poor parameter setting of the AP algorithm. A...
An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
AbstractAiming at the problems of insufficient ability of artificial COA in the late optimization search period, loss of population diversity, easy to fall into local extreme value...

Back to Top