Javascript must be enabled to continue!
Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity
View through CrossRef
In this paper, the quantum phase transition of cold atoms in a two-mode photomechanical cavity with nonlinear coupling between the optical field (mode 1) and the mechanical oscillator is studied on the basis of the two-mode Dicke model. The functional of the ground state energy of the system is obtained by spin coherent states and variational method. By solving and judging the stability, the phase transformation point and ground state phase diagram are obtained. It is found that there are bistable state of normal phase and reverse normal phase, coexistent state of superradiation phase and reversed normal phase, and reversed normal phase that exists alone. The different interaction strengths between atoms and two-mode light fields greatly affect the value of the phase transition point. There is a quantum phase transition from a normal phase through a phase transition point to a superradiant phase. The light-phonon nonlinear coupling has no effect on the phase transition point, but induces the collapse of the superradiant phase. There is a turning point through which the quantum phase transition from the superradiant phase to the reversed normal phase can be realized. The region of the superradiation phase decreases with the increase of the photon-phonon coupling, and it shrinks to zero at the critical value of the coupling, that is, the turning point and the phase transition point coincide, and there may be a reversal of the atomic population between the two normal phases. The nonlinear coupling of the light-phonon also produces an unstable non-zero photon state, which corresponds to the superradiation state. In the absence of mechanical oscillators, the results of the two-mode Dicke model are returned.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity
Description:
In this paper, the quantum phase transition of cold atoms in a two-mode photomechanical cavity with nonlinear coupling between the optical field (mode 1) and the mechanical oscillator is studied on the basis of the two-mode Dicke model.
The functional of the ground state energy of the system is obtained by spin coherent states and variational method.
By solving and judging the stability, the phase transformation point and ground state phase diagram are obtained.
It is found that there are bistable state of normal phase and reverse normal phase, coexistent state of superradiation phase and reversed normal phase, and reversed normal phase that exists alone.
The different interaction strengths between atoms and two-mode light fields greatly affect the value of the phase transition point.
There is a quantum phase transition from a normal phase through a phase transition point to a superradiant phase.
The light-phonon nonlinear coupling has no effect on the phase transition point, but induces the collapse of the superradiant phase.
There is a turning point through which the quantum phase transition from the superradiant phase to the reversed normal phase can be realized.
The region of the superradiation phase decreases with the increase of the photon-phonon coupling, and it shrinks to zero at the critical value of the coupling, that is, the turning point and the phase transition point coincide, and there may be a reversal of the atomic population between the two normal phases.
The nonlinear coupling of the light-phonon also produces an unstable non-zero photon state, which corresponds to the superradiation state.
In the absence of mechanical oscillators, the results of the two-mode Dicke model are returned.
Related Results
Quantum phase transitions in coupled optomechanical cavities
Quantum phase transitions in coupled optomechanical cavities
In this paper, the quantum phase transitions caused by the interactions between light and atoms, as well as between light and mechanical oscillators, are discussed theoretically in...
Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models
Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models
<sec>Quantum phase transition is an important subject in the field of quantum optics and condensed matter physics. In this work, we study the quantum phase transition of the ...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble
Fiber-cavity enhanced and high-fidelity optical memory in cold atom ensemble
Entanglement between a photon and an atomic memory is an important tool for quantum repeater research. By using the Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble, q...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...


