Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Activation of JNK in Sensory Neurons Protects against Sensory Neuron Cell Death in Diabetes and on Exposure to Glucose/Oxidative Stress in Vitro

View through CrossRef
Abstract: Diabetes activates all three groups of MAP kinases in sensory ganglia. Inhibition of this activation for the ERK and p38 groups prevents nerve damage, and agents that improve neuronal function in diabetic rats—antioxidants and aldose reductase inhibitors—also inhibit activation of ERK and p38 in dorsal root ganglia (DRG). However, these same treatments consistently increase activation of JNK. Thus, in DRG from rats with streptozotocin (STZ)‐induced diabetes of 12‐week duration, the p54/56 isoforms of JNK were activated by 2.75 compared to controls (P < .05). In DRG from diabetic rats treated with a gamma‐linolenic acid and alpha‐lipoic acid diester (GLA⁁⁁LA), the activity of the p54/56 isoform was 3.75 that of controls and the p46 isoform was also increased to 1.75 that of controls (both P < .05 compared to both controls and untreated diabetics). We therefore tested the hypothesis that JNK activation is protective. Exposure of rats to diabetes increased activation of JNK in DRG, but treatment with GLA⁁⁁LA increased this effect (P < .05). Specific inhibition of JNK in primary cultures of DRG neurons using a peptide inhibitor of JNK (JNKi1, 159–600‐R100, 7.5 μM, Alexis Biochemicals) increased the release of LDH and reduced MTT staining; both findings indicate an increase in neuronal damage. Taken together these findings indicate that multiple isoforms of JNK were activated in sensory neurons of diabetic rats, probably by a combination of raised glucose and oxidative stress, and that this activation of JNK serves to protect the neurons from damage.
Title: Activation of JNK in Sensory Neurons Protects against Sensory Neuron Cell Death in Diabetes and on Exposure to Glucose/Oxidative Stress in Vitro
Description:
Abstract: Diabetes activates all three groups of MAP kinases in sensory ganglia.
Inhibition of this activation for the ERK and p38 groups prevents nerve damage, and agents that improve neuronal function in diabetic rats—antioxidants and aldose reductase inhibitors—also inhibit activation of ERK and p38 in dorsal root ganglia (DRG).
However, these same treatments consistently increase activation of JNK.
Thus, in DRG from rats with streptozotocin (STZ)‐induced diabetes of 12‐week duration, the p54/56 isoforms of JNK were activated by 2.
75 compared to controls (P < .
05).
In DRG from diabetic rats treated with a gamma‐linolenic acid and alpha‐lipoic acid diester (GLA⁁⁁LA), the activity of the p54/56 isoform was 3.
75 that of controls and the p46 isoform was also increased to 1.
75 that of controls (both P < .
05 compared to both controls and untreated diabetics).
We therefore tested the hypothesis that JNK activation is protective.
Exposure of rats to diabetes increased activation of JNK in DRG, but treatment with GLA⁁⁁LA increased this effect (P < .
05).
Specific inhibition of JNK in primary cultures of DRG neurons using a peptide inhibitor of JNK (JNKi1, 159–600‐R100, 7.
5 μM, Alexis Biochemicals) increased the release of LDH and reduced MTT staining; both findings indicate an increase in neuronal damage.
Taken together these findings indicate that multiple isoforms of JNK were activated in sensory neurons of diabetic rats, probably by a combination of raised glucose and oxidative stress, and that this activation of JNK serves to protect the neurons from damage.

Related Results

Optogenetic Control of Spine-Head JNK Reveals a Role in Dendritic Spine Regression
Optogenetic Control of Spine-Head JNK Reveals a Role in Dendritic Spine Regression
AbstractIn this study, we use an optogenetic inhibitor of c-Jun NH2-terminal kinase (JNK) in dendritic spine sub-compartments of rat hippocampal neurons. We show that JNK inhibitio...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus
Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus
Spontaneous activities of vibrissa-responding neurons in the rat ventrobasal complex (VB) and somatosensory part of the thalamic reticular nucleus (S-TR) were simultaneously record...
Genetic and Functional Identification of Cardiovagal Nucleus Ambiguus Neurons
Genetic and Functional Identification of Cardiovagal Nucleus Ambiguus Neurons
Heart rate is an important physiological index of overall health and is primarily controlled by the parasympathetic nervous system, which suppresses heart rate at rest and during c...
Glucose intolerance is associated with resting heart rate among individuals without diabetes
Glucose intolerance is associated with resting heart rate among individuals without diabetes
Elevated resting heart rate is associated with cardiovascular diseases and all-cause mortality. Unmanaged diabetes is associated with high blood pressure and high resting heart rat...
ROLE OF HMGB1 IN DOXORUBICIN-INDUCED MYOCARDIAL APOPTOSIS AND ITS REGULATION PATHWAY
ROLE OF HMGB1 IN DOXORUBICIN-INDUCED MYOCARDIAL APOPTOSIS AND ITS REGULATION PATHWAY
Objectives Doxorubicin (DOX) is a widely used anti-tumour agent. The clinical application of the medication is limited by its side effect which can elicit myocard...
Bioinformatics Analysis of Gefitinib or Rapamycin on Inhibiting the Survival of Hela in the Low Glucose and High Lactic Acid Environment
Bioinformatics Analysis of Gefitinib or Rapamycin on Inhibiting the Survival of Hela in the Low Glucose and High Lactic Acid Environment
Objective: To explore on the antitumor effect of gefitinib and rapamycin and possible mechanism in normal glucose and high lactic acid microenvironment. Methods: Hela cells are cul...
Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy.
Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy.
Aberrant neurofilament phosphorylation occurs in many neurodegenerative diseases, and in this study, two animal models of type 1 diabetes--the spontaneously diabetic BB rat and the...

Back to Top