Javascript must be enabled to continue!
Preparation and Characterization of R.F. Magnetron Sputtered Mo:ZnO Thin Films
View through CrossRef
The ZnO and Mo:ZnO thin films were deposited by radio frequency magnetron sputtering on quartz and intrinsic silicon (100) substrates at a fixed combined partial pressure 1×10−2 mbar of Ar + O2 and substrate temperatures of 473 K and 673 K. The effect of Molybdenum doping on ZnO thin films with different Molybdenum concentrations (1-2 atomic percent) was studied with the help of structural and microstructural characterization techniques. The films deposited at a substrate temperature of 473 K exhibited strong c-axis orientation with predominant (002) peak. At 673 K, along with (002) orientation, other orientations (100), (101), (220), and (103) were also observed. Among these, the (220) peak indicates the cubic phase of ZnO. With increasing Molybdenum concentration, the cubic phase of ZnO disappeared, and the (002) orientation became strong and intense. The composition analysis reveals that the undoped ZnO films deposited at 473 K have oxygen deficiency, and the ratio of Zn/O is improved with increasing Mo atomic percent in ZnO. The surface morphological features reveal that the undoped ZnO films were found to be uniform and have grain size of around 30 nm. The optical energy gap of the undoped ZnO films is 3.05 eV and increases with increasing Mo concentration. The thickness of the films is around 456 nm.
Title: Preparation and Characterization of R.F. Magnetron Sputtered Mo:ZnO Thin Films
Description:
The ZnO and Mo:ZnO thin films were deposited by radio frequency magnetron sputtering on quartz and intrinsic silicon (100) substrates at a fixed combined partial pressure 1×10−2 mbar of Ar + O2 and substrate temperatures of 473 K and 673 K.
The effect of Molybdenum doping on ZnO thin films with different Molybdenum concentrations (1-2 atomic percent) was studied with the help of structural and microstructural characterization techniques.
The films deposited at a substrate temperature of 473 K exhibited strong c-axis orientation with predominant (002) peak.
At 673 K, along with (002) orientation, other orientations (100), (101), (220), and (103) were also observed.
Among these, the (220) peak indicates the cubic phase of ZnO.
With increasing Molybdenum concentration, the cubic phase of ZnO disappeared, and the (002) orientation became strong and intense.
The composition analysis reveals that the undoped ZnO films deposited at 473 K have oxygen deficiency, and the ratio of Zn/O is improved with increasing Mo atomic percent in ZnO.
The surface morphological features reveal that the undoped ZnO films were found to be uniform and have grain size of around 30 nm.
The optical energy gap of the undoped ZnO films is 3.
05 eV and increases with increasing Mo concentration.
The thickness of the films is around 456 nm.
Related Results
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
Study of In2O3 and ZnO thin films for selective gas sensors applications
Study of In2O3 and ZnO thin films for selective gas sensors applications
The goal of this thesis is the study In2O3 and ZnO thin films for selective gas sensors applications with focus on growth effect on the films structure and surface topology as esse...
Effect of synthesized carbon quantum dots on the photocatalytic properties of ZnO
Effect of synthesized carbon quantum dots on the photocatalytic properties of ZnO
ABSTRACT. In this work, synthesized carbon quantum dots (CQDs) and zinc oxide nanoparticles (ZnO NPs) are used to form ZnO/CQDs nanocomposite. The characterization of this nanocomp...
Spray Coated Nanocellulose Films Productions, Characterization and Application
Spray Coated Nanocellulose Films Productions, Characterization and Application
Nanocellulose (NC) is a biodegradable, renewable and sustainable material. It has strong potential to use as a functional material in various applications such as barriers, coating...
PREPARATION OF ZNO/SEPIOLITE COMPOSITE AND ITS PHOTOCATALYTIC PERFORMANCE FOR THE WATER DECONTAMINATION
PREPARATION OF ZNO/SEPIOLITE COMPOSITE AND ITS PHOTOCATALYTIC PERFORMANCE FOR THE WATER DECONTAMINATION
The photocatalysis technology has become an important means to control environmental pollutions especially water pollution. A new ZnO/sepiolite composite was prepared using the sol...
Stability of TiO2-coated ZnO photocatalytic thin films for photodegradation of methylene blue
Stability of TiO2-coated ZnO photocatalytic thin films for photodegradation of methylene blue
Investigations on the stability of titanium dioxide (TiO2)-coated zinc oxide (ZnO) thin films upon repeated uses for methylene blue (MB) degradation were conducted. Photocorrosion ...
One pot synthesis and characterization of visible light responsive ZnO/CuO composites for efficient photocatalytic degradation of methylene blue
One pot synthesis and characterization of visible light responsive ZnO/CuO composites for efficient photocatalytic degradation of methylene blue
Industrial wastewater is a major contributor to water pollution, posing significant health risks and necessitating effective purification to prevent resource contamination. Organic...
Study on fabrication of ZnO@TiO2 nanocomposite for perozone degradation of amoxicillin from aqueous solution
Study on fabrication of ZnO@TiO2 nanocomposite for perozone degradation of amoxicillin from aqueous solution
In this study, a simple method for fabrication of a ZnO@TiO2 nanocomposite was developed to degrade amoxicillin (AMX) from aqueous solution by heterogeneous ...

