Javascript must be enabled to continue!
Thrust Ripple Force Minimization and Efficiency Analysis of Electromagnetic Actuator on Active Suspension
View through CrossRef
A novel electromagnetic actuator for active suspension is designed on an in-wheel motor electric vehicle in this paper. Aiming at reducing thrust ripple force and improving stability of the actuator, a method of calculating the optimum slot width and optimizing edge radian of end tooth is proposed. Firstly, a finite element model (FEM) of the actuator is modeled, and the correctness of FEM is verified through comparisons of simulation results and analytical ones, including counterelectromotive force of coil winding and force characteristic test of the actuator. Based on the FEM, the influence of slot width on electromagnetic thrust and total harmonic distortion (THD) is analyzed, and the slot width is improved. The side effect of the actuator is considered. By improving the edge radian, the fluctuation of the cogging force and thrust ripple is reduced. In addition, output efficiency and energy feed efficiency of the actuator after reducing thrust ripple are studied. The results show the minimum THD is 4.2%, which is obtained at the slot width 4.3 mm, and thrust ripple is 36.5 N. When the edge radian is 60°, the thrust ripple decreases to only 15.7 N, which is reduced by 57.0%. The maximum output efficiency and energy feedback efficiency of the actuator are 87.5% and 27.1%, respectively. Finally, according to actuator characteristic tests of two working modes, it is concluded that the maximum energy feedback efficiency is 25.6%. The input current and current frequency should be gradually increased with the increase of suspension speed under active mode, and the maximum output efficiency is 80.2%. The test results are basically consistent with the FEM analysis values, which verify the correctness of the FEM analysis.
Title: Thrust Ripple Force Minimization and Efficiency Analysis of Electromagnetic Actuator on Active Suspension
Description:
A novel electromagnetic actuator for active suspension is designed on an in-wheel motor electric vehicle in this paper.
Aiming at reducing thrust ripple force and improving stability of the actuator, a method of calculating the optimum slot width and optimizing edge radian of end tooth is proposed.
Firstly, a finite element model (FEM) of the actuator is modeled, and the correctness of FEM is verified through comparisons of simulation results and analytical ones, including counterelectromotive force of coil winding and force characteristic test of the actuator.
Based on the FEM, the influence of slot width on electromagnetic thrust and total harmonic distortion (THD) is analyzed, and the slot width is improved.
The side effect of the actuator is considered.
By improving the edge radian, the fluctuation of the cogging force and thrust ripple is reduced.
In addition, output efficiency and energy feed efficiency of the actuator after reducing thrust ripple are studied.
The results show the minimum THD is 4.
2%, which is obtained at the slot width 4.
3 mm, and thrust ripple is 36.
5 N.
When the edge radian is 60°, the thrust ripple decreases to only 15.
7 N, which is reduced by 57.
0%.
The maximum output efficiency and energy feedback efficiency of the actuator are 87.
5% and 27.
1%, respectively.
Finally, according to actuator characteristic tests of two working modes, it is concluded that the maximum energy feedback efficiency is 25.
6%.
The input current and current frequency should be gradually increased with the increase of suspension speed under active mode, and the maximum output efficiency is 80.
2%.
The test results are basically consistent with the FEM analysis values, which verify the correctness of the FEM analysis.
Related Results
Capability of pipe inside an actuator to move in various fluid and oil surfaces
Capability of pipe inside an actuator to move in various fluid and oil surfaces
This paper proposes a novel pipe inside a magnetic actuator that operates on the elastic energy of a vibration component excited by electromagnetic force. Flexible material such as...
RIPPLE MARK INDICES AND THEIR USES
RIPPLE MARK INDICES AND THEIR USES
SUMMARYThe following dimensionless parameters (two of them well‐known and five of them new) are defined for determination of ripple mark geometry: ripple index (RI), ripple symmetr...
Research on an Electromagnetic Actuator for Vibration Suppression and Energy Regeneration
Research on an Electromagnetic Actuator for Vibration Suppression and Energy Regeneration
This paper proposes an electromagnetic actuator that concurrently realizes two working functions of vibration suppression and energy regeneration. The actuator consists of four per...
Thrust density characteristics of ion thruster
Thrust density characteristics of ion thruster
Thrust density distribution of ion thruster is an important factor that affects the orbit correction and station keeping of the spacecraft. Current empirical models mainly concern ...
Turbojet direct-thrust control scheme for full-envelope fuel consumption minimization
Turbojet direct-thrust control scheme for full-envelope fuel consumption minimization
Purpose
Reducing fuel consumption of unmanned aerial vehicles (UAVs) during transient operation is a cornerstone to achieve environment-friendly operations. The purpose of this pap...
Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator
Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator
Flow control using plasma actuator is a promising research field of aeronautical applications. Due to its low energy consumption, rapid response and simple construction, this actua...
Early Miocene Thrust Tectonics on Raukumara Peninsula, Northeastern New Zealand
Early Miocene Thrust Tectonics on Raukumara Peninsula, Northeastern New Zealand
<p>Raukumara Peninsula lies at the northeastern end of the East Coast Deformed Belt, a province of deformed Late Mesozoic-Late Cenozoic rocks on the eastern edges of the Nort...
Thrust Wedge Dominated Multilayered Propagation Using Finite Strain Sandbox Modeling: Growth of the Western Xuefeng Fold‐Thrust Belt, South China Block
Thrust Wedge Dominated Multilayered Propagation Using Finite Strain Sandbox Modeling: Growth of the Western Xuefeng Fold‐Thrust Belt, South China Block
AbstractFormation and propagation of thrust wedges in foreland fold–thrust belts are critical for the horizontal growth of orogenic belts. Based on the multilayered detachment syst...


