Javascript must be enabled to continue!
Multiple surface segmentation using novel deep learning and graph based methods
View through CrossRef
<p>The task of automatically segmenting 3-D surfaces representing object boundaries is important in quantitative analysis of volumetric images, which plays a vital role in numerous biomedical applications. For the diagnosis and management of disease, segmentation of images of organs and tissues is a crucial step for the quantification of medical images. Segmentation finds the boundaries or, limited to the 3-D case, the surfaces, that separate regions, tissues or areas of an image, and it is essential that these boundaries approximate the true boundary, typically by human experts, as closely as possible. Recently, graph-based methods with a global optimization property have been studied and used for various applications. Sepecifically, the state-of-the-art graph search (optimal surface segmentation) method has been successfully used for various such biomedical applications. Despite their widespread use for image segmentation, real world medical image segmentation problems often pose difficult challenges, wherein graph based segmentation methods in its purest form may not be able to perform the segmentation task successfully. This doctoral work has a twofold objective. 1)To identify medical image segmentation problems which are difficult to solve using existing graph based method and develop novel methods by employing graph search as a building block to improve segmentation accuracy and efficiency. 2) To develop a novel multiple surface segmentation strategy using deep learning which is more computationally efficient and generic than the exisiting graph based methods, while eliminating the need for human expert intervention as required in the current surface segmentation methods. This developed method is possibly the first of its kind where the method does not require and human expert designed operations. To accomplish the objectives of this thesis work, a comprehensive framework of graph based and deep learning methods is proposed to achieve the goal by successfully fulfilling the follwoing three aims. First, an efficient, automated and accurate graph based method is developed to segment surfaces which have steep change in surface profiles and abrupt distance changes between two adjacent surfaces. The developed method is applied and validated on intra-retinal layer segmentation of Spectral Domain Optical Coherence Tomograph (SD-OCT) images of eye with Glaucoma, Age Related Macular Degneration and Pigment Epithelium Detachment. Second, a globally optimal graph based method is developed to attain subvoxel and super resolution accuracy for multiple surface segmentation problem while imposing convex constraints. The developed method was applied to layer segmentation of SD-OCT images of normal eye and vessel walls in Intravascular Ultrasound (IVUS) images. Third, a deep learning based multiple surface segmentation is developed which is more generic, computaionally effieient and eliminates the requirement of human expert interventions (like transformation designs, feature extrraction, parameter tuning, constraint modelling etc.) required by existing surface segmentation methods in varying capacities. The developed method was applied to SD-OCT images of normal and diseased eyes, to validate the superior segmentaion performance, computation efficieny and the generic nature of the framework, compared to the state-of-the-art graph search method.</p>
The University of Iowa
Title: Multiple surface segmentation using novel deep learning and graph based methods
Description:
<p>The task of automatically segmenting 3-D surfaces representing object boundaries is important in quantitative analysis of volumetric images, which plays a vital role in numerous biomedical applications.
For the diagnosis and management of disease, segmentation of images of organs and tissues is a crucial step for the quantification of medical images.
Segmentation finds the boundaries or, limited to the 3-D case, the surfaces, that separate regions, tissues or areas of an image, and it is essential that these boundaries approximate the true boundary, typically by human experts, as closely as possible.
Recently, graph-based methods with a global optimization property have been studied and used for various applications.
Sepecifically, the state-of-the-art graph search (optimal surface segmentation) method has been successfully used for various such biomedical applications.
Despite their widespread use for image segmentation, real world medical image segmentation problems often pose difficult challenges, wherein graph based segmentation methods in its purest form may not be able to perform the segmentation task successfully.
This doctoral work has a twofold objective.
1)To identify medical image segmentation problems which are difficult to solve using existing graph based method and develop novel methods by employing graph search as a building block to improve segmentation accuracy and efficiency.
2) To develop a novel multiple surface segmentation strategy using deep learning which is more computationally efficient and generic than the exisiting graph based methods, while eliminating the need for human expert intervention as required in the current surface segmentation methods.
This developed method is possibly the first of its kind where the method does not require and human expert designed operations.
To accomplish the objectives of this thesis work, a comprehensive framework of graph based and deep learning methods is proposed to achieve the goal by successfully fulfilling the follwoing three aims.
First, an efficient, automated and accurate graph based method is developed to segment surfaces which have steep change in surface profiles and abrupt distance changes between two adjacent surfaces.
The developed method is applied and validated on intra-retinal layer segmentation of Spectral Domain Optical Coherence Tomograph (SD-OCT) images of eye with Glaucoma, Age Related Macular Degneration and Pigment Epithelium Detachment.
Second, a globally optimal graph based method is developed to attain subvoxel and super resolution accuracy for multiple surface segmentation problem while imposing convex constraints.
The developed method was applied to layer segmentation of SD-OCT images of normal eye and vessel walls in Intravascular Ultrasound (IVUS) images.
Third, a deep learning based multiple surface segmentation is developed which is more generic, computaionally effieient and eliminates the requirement of human expert interventions (like transformation designs, feature extrraction, parameter tuning, constraint modelling etc.
) required by existing surface segmentation methods in varying capacities.
The developed method was applied to SD-OCT images of normal and diseased eyes, to validate the superior segmentaion performance, computation efficieny and the generic nature of the framework, compared to the state-of-the-art graph search method.
</p>.
Related Results
AI‐enabled precise brain tumor segmentation by integrating Refinenet and contour‐constrained features in MRI images
AI‐enabled precise brain tumor segmentation by integrating Refinenet and contour‐constrained features in MRI images
AbstractBackgroundMedical image segmentation is a fundamental task in medical image analysis and has been widely applied in multiple medical fields. The latest transformer‐based de...
Depth-aware salient object segmentation
Depth-aware salient object segmentation
Object segmentation is an important task which is widely employed in many computer vision applications such as object detection, tracking, recognition, and ret...
Deep learning for small object detection in images
Deep learning for small object detection in images
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] With the rapid development of deep learning in computer vision, especially deep convolutional neural network...
Evaluation of automatic pericardial segmentation methods in computed tomography images
Evaluation of automatic pericardial segmentation methods in computed tomography images
Abstract
Funding Acknowledgements
Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Funda...
A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI
A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI
Conventional medical imaging and machine learning techniques are not perfect enough to correctly segment the brain tumor in MRI as the proper identification and segmentation of tum...
Abstract 902: Explainable AI: Graph machine learning for response prediction and biomarker discovery
Abstract 902: Explainable AI: Graph machine learning for response prediction and biomarker discovery
Abstract
Accurately predicting drug sensitivity and understanding what is driving it are major challenges in drug discovery. Graphs are a natural framework for captu...
Two fully automated data-driven 3D whole-breast segmentation strategies in MRI for MR-based breast density using image registration and U-Net with a focus on reproducibility
Two fully automated data-driven 3D whole-breast segmentation strategies in MRI for MR-based breast density using image registration and U-Net with a focus on reproducibility
AbstractPresence of higher breast density (BD) and persistence over time are risk factors for breast cancer. A quantitatively accurate and highly reproducible BD measure that relie...
Domination of Polynomial with Application
Domination of Polynomial with Application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...

