Javascript must be enabled to continue!
Research on the Modification of Coal Adaptability and Carbon Emissions Reduction Technology for Coal-Fired Boilers
View through CrossRef
In order to solve the problems of the high temperature of flue gas, low boiler efficiency, and the high concentration of nitrogen oxide (NOx) emissions for a 330 MW boiler fired with lean coal in a power plant, an adaptation modification by using different type of coals in the power generation unit (including pulverizing system, burners, heating surface, and so on) was carried out. The performances of boilers were tested under different combustion conditions before and after the modification. The results of the test show that the volatile content is higher and easy to burn out, and the combustible content of fly ash and slag are greatly reduced after the change in coal type (while lean coal is changed into bituminous coal). At the same time, the low-temperature economizer can greatly reduce the flue gas temperature, thus increasing the efficiency from 90.36% (lean coal, corrected) to 92.71% (bituminous coal). After the change in coal type (lean coal to bituminous coal) and the shift to low-nitrogen combustion (using low-nitrogen burner and OFA technology), the flame temperature in the main combustion area of the boiler decreases, the thermal-type NOx is reduced, and the volatile content of bituminous coal is higher in the anoxic atmosphere of the main combustion zone where the excess air coefficient is small. The intermediate reductive products tend to produce more, which can restrain and reduce NOx. Therefore, the concentration of NOx emissions can be greatly reduced. NOx average emissions at the economizer outlet decreased by 68%, from 864 mg/Nm3 to 279.4 mg/Nm3. A low-temperature economizer uses waste heat to heat feed water, which reduces coal consumption by about 1.32 g/(kW·h). The coal consumption for power supply after modification is reduced by 9.83 g/(kW·h) and the annual energy saving is 16,776 tons of standard coal, while the total carbon dioxide emissions reduction is 41,213.60 tons after the unit modification.
Title: Research on the Modification of Coal Adaptability and Carbon Emissions Reduction Technology for Coal-Fired Boilers
Description:
In order to solve the problems of the high temperature of flue gas, low boiler efficiency, and the high concentration of nitrogen oxide (NOx) emissions for a 330 MW boiler fired with lean coal in a power plant, an adaptation modification by using different type of coals in the power generation unit (including pulverizing system, burners, heating surface, and so on) was carried out.
The performances of boilers were tested under different combustion conditions before and after the modification.
The results of the test show that the volatile content is higher and easy to burn out, and the combustible content of fly ash and slag are greatly reduced after the change in coal type (while lean coal is changed into bituminous coal).
At the same time, the low-temperature economizer can greatly reduce the flue gas temperature, thus increasing the efficiency from 90.
36% (lean coal, corrected) to 92.
71% (bituminous coal).
After the change in coal type (lean coal to bituminous coal) and the shift to low-nitrogen combustion (using low-nitrogen burner and OFA technology), the flame temperature in the main combustion area of the boiler decreases, the thermal-type NOx is reduced, and the volatile content of bituminous coal is higher in the anoxic atmosphere of the main combustion zone where the excess air coefficient is small.
The intermediate reductive products tend to produce more, which can restrain and reduce NOx.
Therefore, the concentration of NOx emissions can be greatly reduced.
NOx average emissions at the economizer outlet decreased by 68%, from 864 mg/Nm3 to 279.
4 mg/Nm3.
A low-temperature economizer uses waste heat to heat feed water, which reduces coal consumption by about 1.
32 g/(kW·h).
The coal consumption for power supply after modification is reduced by 9.
83 g/(kW·h) and the annual energy saving is 16,776 tons of standard coal, while the total carbon dioxide emissions reduction is 41,213.
60 tons after the unit modification.
Related Results
Prediction of Carbon Emissions in Guizhou Province-Based on Different Neural Network Models
Prediction of Carbon Emissions in Guizhou Province-Based on Different Neural Network Models
Abstract
Global warming caused by greenhouse gas emissions has become a major challenge facing people all over the world. The study of regional human activities and...
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
With the motivation to investigate the role of coal physical structure on the adsorption performance of coal reservoir, 18 different types of coal samples with different coal struc...
Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP
Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP
The building sector has gradually become a major contributor of carbon emissions in recent years. Its carbon emissions, which result from the long heating period and considerable c...
The development of the market of qualified coal fuels in Poland
The development of the market of qualified coal fuels in Poland
Abstract
The aim of this article is to discuss the changes that have been observed on the market of qualified coal fuels (the so-called eco-pea coal) over the last few years. T...
Coal and Coal Byproducts as Potential Sources of Rare Earth Elements (REE) in Indiana
Coal and Coal Byproducts as Potential Sources of Rare Earth Elements (REE) in Indiana
The purpose of this study is to evaluate coal and coal byproducts (coal waste, coal ash, and acid mine drainage) in Indiana as potential sources of rare earth elements (REE). On a ...
Modeling Climate Impacts of Hydrogen Transition Pathways
Modeling Climate Impacts of Hydrogen Transition Pathways
Hydrogen has emerged as a key contender for decarbonizing hard-to-abate sectors, as it has the advantage of emitting no direct carbon dioxide emissions during combustion. However, ...
Peat forest disturbances in tropical regions: direct drivers and GHG emissions
Peat forest disturbances in tropical regions: direct drivers and GHG emissions
We estimated and compared driver-specific GHG (CO₂, CH₄, and N₂O) emissions from biomass and peat soil carbon loss caused by peat forest disturbances ...

