Javascript must be enabled to continue!
Generalized Reynolds Operators on Lie-Yamaguti Algebras
View through CrossRef
In this paper, the notion of generalized Reynolds operators on Lie-Yamaguti algebras is introduced, and the cohomology of a generalized Reynolds operator is established. The formal deformations of a generalized Reynolds operator are studied using the first cohomology group. Then, we show that a Nijenhuis operator on a Lie-Yamaguti algebra gives rise to a representation of the deformed Lie-Yamaguti algebra and a 2-cocycle. Consequently, the identity map will be a generalized Reynolds operator on the deformed Lie-Yamaguti algebra. We also introduce the notion of a Reynolds operator on a Lie-Yamaguti algebra, which can serve as a special case of generalized Reynolds operators on Lie-Yamaguti algebras.
Title: Generalized Reynolds Operators on Lie-Yamaguti Algebras
Description:
In this paper, the notion of generalized Reynolds operators on Lie-Yamaguti algebras is introduced, and the cohomology of a generalized Reynolds operator is established.
The formal deformations of a generalized Reynolds operator are studied using the first cohomology group.
Then, we show that a Nijenhuis operator on a Lie-Yamaguti algebra gives rise to a representation of the deformed Lie-Yamaguti algebra and a 2-cocycle.
Consequently, the identity map will be a generalized Reynolds operator on the deformed Lie-Yamaguti algebra.
We also introduce the notion of a Reynolds operator on a Lie-Yamaguti algebra, which can serve as a special case of generalized Reynolds operators on Lie-Yamaguti algebras.
Related Results
Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras
Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras
Given a (quasi-)twilled pre-Lie algebra, we first construct a differential graded Lie algebra ([Formula: see text]-algebra). Then we study the twisting theory of (quasi-)twilled pr...
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
The purpose of this paper is to study the $\mathcal{O}$-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by $\mathcal{O}$-operators. Furthe...
Central invariants and enveloping algebras of braided Hom-Lie algebras
Central invariants and enveloping algebras of braided Hom-Lie algebras
Let (H,?) be a monoidal Hom-Hopf algebra and HH HYD the Hom-Yetter-Drinfeld
category over (H,?). Then in this paper, we first introduce the definition
of braided Hom-Lie alge...
Finitely Presented Heyting Algebras
Finitely Presented Heyting Algebras
In this paper we study the structure of finitely presented Heyting<br />algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every s...
Realizations of 3-Lie algebras
Realizations of 3-Lie algebras
3-Lie algebras have close relationships with many important fields in mathematics and mathematical physics. In this paper, we provide a construction of 3-Lie algebras in terms of L...
Generalized Reynolds Operators on Hom-Lie Triple Systems
Generalized Reynolds Operators on Hom-Lie Triple Systems
Uchino first initiated the study of generalized Reynolds operators on associative algebras.
Recently, related research has become a hot topic. In this paper, we first intr...
Weak pseudo-BCK algebras
Weak pseudo-BCK algebras
Abstract
In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BC...
Coherent categorical structures for Lie bialgebras, Manin triples, classical r-matrices and pre-Lie algebras
Coherent categorical structures for Lie bialgebras, Manin triples, classical r-matrices and pre-Lie algebras
Abstract
The broadly applied notions of Lie bialgebras, Manin triples, classical r-matrices and
...

