Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

GSK3 and Tau: Two Convergence Points in Alzheimer's Disease

View through CrossRef
Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed serine/threonine kinase that plays a key role in the pathogenesis of Alzheimer's disease (AD). GSK3 phosphorylates tau in most serine and threonine residues hyperphosphorylated in paired helical filaments, and GSK3 activity contributes both to amyloid-β production and amyloid-β-mediated neuronal death. Thus, mice generated in our laboratory with conditional overexpression of GSK3 in forebrain neurons (Tet/GSK3β mice) recapitulate aspects of AD neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis, as well as spatial learning deficit. In this review, we describe recent contributions of our group showing that transgene shutdown in that animal model leads to normal GSK3 activity, normal phospho-tau levels, diminished neuronal death, and suppression of the cognitive deficit, thus further supporting the potential of GSK3 inhibitors for AD therapeutics. In addition, we have combined transgenic mice overexpressing the enzyme GSK3β with transgenic mice expressing tau with a triple FTDP-17 mutation that develop prefibrillar tau-aggregates. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Further, it is possible to partially reverse tau pathology in advanced stages of the disease, although the presence of already assembled neurofibrillary tangle-like structures cannot be reversed.
Title: GSK3 and Tau: Two Convergence Points in Alzheimer's Disease
Description:
Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed serine/threonine kinase that plays a key role in the pathogenesis of Alzheimer's disease (AD).
GSK3 phosphorylates tau in most serine and threonine residues hyperphosphorylated in paired helical filaments, and GSK3 activity contributes both to amyloid-β production and amyloid-β-mediated neuronal death.
Thus, mice generated in our laboratory with conditional overexpression of GSK3 in forebrain neurons (Tet/GSK3β mice) recapitulate aspects of AD neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis, as well as spatial learning deficit.
In this review, we describe recent contributions of our group showing that transgene shutdown in that animal model leads to normal GSK3 activity, normal phospho-tau levels, diminished neuronal death, and suppression of the cognitive deficit, thus further supporting the potential of GSK3 inhibitors for AD therapeutics.
In addition, we have combined transgenic mice overexpressing the enzyme GSK3β with transgenic mice expressing tau with a triple FTDP-17 mutation that develop prefibrillar tau-aggregates.
Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear.
Further, it is possible to partially reverse tau pathology in advanced stages of the disease, although the presence of already assembled neurofibrillary tangle-like structures cannot be reversed.

Related Results

L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
&nbsp; <p>&Nu;ί&kappa;&omicron;&sigmaf; &Omicron;&iota;&kappa;&omicron;&nu;&omicron;&mu;ί&delta;&eta;&sigmaf;</...
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
<span style="font-size: 11pt; color: black; font-family: 'Times New Roman','serif'">&Pi;&Eta;&Lambda;&Iota;&Nu;&Alpha; &Iota;&Gamma;&Delta...
Un manoscritto equivocato del copista santo Theophilos († 1548)
Un manoscritto equivocato del copista santo Theophilos († 1548)
<p><font size="3"><span class="A1"><span style="font-family: 'Times New Roman','serif'">&Epsilon;&Nu;&Alpha; &Lambda;&Alpha;&Nu;&...
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract Considering that a tumor promoting role for GSK3 has been suggested in pancreatic cancer (PC) cells and that GSK3 inhibitors are currently under clinical tr...
ATN status in amnestic and non-amnestic Alzheimer’s disease and frontotemporal lobar degeneration
ATN status in amnestic and non-amnestic Alzheimer’s disease and frontotemporal lobar degeneration
AbstractUnder the ATN framework, cerebrospinal fluid analytes provide evidence of the presence or absence of Alzheimer’s disease pathological hallmarks: amyloid plaques (A), phosph...
The Conundrum of GSK3 Inhibitors: Is it the Dawn of a New Beginning?
The Conundrum of GSK3 Inhibitors: Is it the Dawn of a New Beginning?
Spanning over three decades of extensive drug discovery research, the efforts to develop a potent and selective GSK3 inhibitor as a therapeutic for the treatment of type 2 diabetes...
Tau associates with protein tyrosine phosphatase SHP2
Tau associates with protein tyrosine phosphatase SHP2
<p>The microtubule-associated protein tau normally functions to bind to and stabilize microtubules. However, evidence now indicates that tau may also play a critical role in ...
A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients
A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients
Abstract Early detection of Alzheimer’s disease is vital for timely treatment. Existing biomarkers for Alzheimer’s disease reflect amyloid- and tau-related pathology...

Back to Top