Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Pulsed Laser Deposition of Nanostructured MoS3/np-Mo//WO3−y Hybrid Catalyst for Enhanced (Photo) Electrochemical Hydrogen Evolution

View through CrossRef
Pulsed laser ablation of MoS2 and WO3 targets at appropriate pressures of background gas (Ar, air) were used for the preparation of new hybrid nanostructured catalytic films for hydrogen production in an acid solution. The films consisted of a nanostructured WO3−y underlayer that was covered with composite MoS3/np-Mo nanocatalyst. The use of dry air with pressures of 40 and 80 Pa allowed the formation of porous WO3−y films with cauliflower- and web-like morphology, respectively. The ablation of the MoS2 target in Ar gas at a pressure of 16 Pa resulted in the formation of amorphous MoS3 films and spherical Mo nanoparticles. The hybrid MoS3/np-Mo//WO3−y films deposited on transparent conducting substrates possessed the enhanced (photo)electrocatalytic performance in comparison with that of any pristine one (MoS3/np-Mo or WO3−y films) with the same loading. Modeling by the kinetic Monte Carlo method indicated that the change in morphology of the deposited WO3−y films could be caused by the transition of ballistic deposition to diffusion limited aggregation of structural units (atoms/clusters) under background gas pressure growth. The factors and mechanisms contributing to the enhancement of the electrocatalytic activity of hybrid nanostructured films and facilitating the effective photo-activation of hydrogen evolution in these films are considered.
Title: Pulsed Laser Deposition of Nanostructured MoS3/np-Mo//WO3−y Hybrid Catalyst for Enhanced (Photo) Electrochemical Hydrogen Evolution
Description:
Pulsed laser ablation of MoS2 and WO3 targets at appropriate pressures of background gas (Ar, air) were used for the preparation of new hybrid nanostructured catalytic films for hydrogen production in an acid solution.
The films consisted of a nanostructured WO3−y underlayer that was covered with composite MoS3/np-Mo nanocatalyst.
The use of dry air with pressures of 40 and 80 Pa allowed the formation of porous WO3−y films with cauliflower- and web-like morphology, respectively.
The ablation of the MoS2 target in Ar gas at a pressure of 16 Pa resulted in the formation of amorphous MoS3 films and spherical Mo nanoparticles.
The hybrid MoS3/np-Mo//WO3−y films deposited on transparent conducting substrates possessed the enhanced (photo)electrocatalytic performance in comparison with that of any pristine one (MoS3/np-Mo or WO3−y films) with the same loading.
Modeling by the kinetic Monte Carlo method indicated that the change in morphology of the deposited WO3−y films could be caused by the transition of ballistic deposition to diffusion limited aggregation of structural units (atoms/clusters) under background gas pressure growth.
The factors and mechanisms contributing to the enhancement of the electrocatalytic activity of hybrid nanostructured films and facilitating the effective photo-activation of hydrogen evolution in these films are considered.

Related Results

SiO2 /WO3 /ZnO Based Self-cleaning Coatings for Solar Cells
SiO2 /WO3 /ZnO Based Self-cleaning Coatings for Solar Cells
Abstract The accumulation of pollution and any kinds of contamination on the glass cover of the solar cell affects the efficiency of the photovoltaic (PV) systems. The cont...
Electrochemical Performance of Carbon-Coated Cauliflower-like WO3 for Li-Ion Batteries
Electrochemical Performance of Carbon-Coated Cauliflower-like WO3 for Li-Ion Batteries
Metal oxides have been considered and investigated as alternative anodes for use in lithium ion batteries. The research focus is on two different mechanism groups: intercalation–de...
Novel heterostructure of CdS nanoparticle/WO3 nanowhisker: Synthesis and photocatalytic properties
Novel heterostructure of CdS nanoparticle/WO3 nanowhisker: Synthesis and photocatalytic properties
A novel heterostructure of CdS nanoparticles/WO3 nanowhiskers was synthesized using a simple two-step process; thermal evaporation and chemical bath deposition. First, WO3 nanowhis...
Synthesis of WO<sub>3</sub>/AgI photocatalysts applying for degradation of antibiotics in water
Synthesis of WO<sub>3</sub>/AgI photocatalysts applying for degradation of antibiotics in water
In this paper, AgI was successfully synthesized in the presence of WO3 to form AgI/WO3 Z scheme hetero-junction by solid-phase heating method and by varying the WO3 mole ratio (1:0...
Research progress of hydrogen tunneling in two-dimensional materials
Research progress of hydrogen tunneling in two-dimensional materials
One-atom-thick material such as graphene, graphene derivatives and graphene-like materials, usually has a dense network lattice structure and therefore dense distribution of electr...
Nanostructured lipid carriers loaded with cannabidiol: A novel antibiofilm approach
Nanostructured lipid carriers loaded with cannabidiol: A novel antibiofilm approach
Introduction: Staphylococcus aureus and Staphylococcus epidermidis are major contributors to skin dysbiosis and infections, e.g. folliculitis and intravascular catheter infections,...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...

Back to Top