Javascript must be enabled to continue!
THE FORCING EDGE FIXING EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH
View through CrossRef
For a connected graph G = (V, E), a set Se ⊆ E(G)–{e} is called an edge fixing edge-to-vertex monophonic set of an edge e of a connected graph G if every vertex of G lies on an e – f edge-to-vertex monophonic path of G, where f ∈ Se. The edge fixing edge-to-vertex monophonic number mefev(G) of G is the minimum cardinality of its edge fixing edge-to-vertex monophonic sets of an edge e of G. A subset Me ⊆ Se in a connected graph G is called a forcing subset for Se, if Se is the unique edge fixing edge-to-vertex monophonic set of e of G containing Me. A forcing subset for Se of minimum cardinality is a minimum subset of Se. The forcing edge fixing edge-to-vertex monophonic number of G denoted by fefev(G) = min {fefev(Se)}, where the minimum is taken over all cardinality of a minimal edge fixing edge-to-vertex monophonic set of e of G. The forcing edge fixing edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. It is shown that for every integers a and b with 0 ≤ a ≤ b, b ≥ 1, there exists a connected graph G such that fefev(G) = a, mefev(G) = b.
World Scientific Pub Co Pte Lt
Title: THE FORCING EDGE FIXING EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH
Description:
For a connected graph G = (V, E), a set Se ⊆ E(G)–{e} is called an edge fixing edge-to-vertex monophonic set of an edge e of a connected graph G if every vertex of G lies on an e – f edge-to-vertex monophonic path of G, where f ∈ Se.
The edge fixing edge-to-vertex monophonic number mefev(G) of G is the minimum cardinality of its edge fixing edge-to-vertex monophonic sets of an edge e of G.
A subset Me ⊆ Se in a connected graph G is called a forcing subset for Se, if Se is the unique edge fixing edge-to-vertex monophonic set of e of G containing Me.
A forcing subset for Se of minimum cardinality is a minimum subset of Se.
The forcing edge fixing edge-to-vertex monophonic number of G denoted by fefev(G) = min {fefev(Se)}, where the minimum is taken over all cardinality of a minimal edge fixing edge-to-vertex monophonic set of e of G.
The forcing edge fixing edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied.
It is shown that for every integers a and b with 0 ≤ a ≤ b, b ≥ 1, there exists a connected graph G such that fefev(G) = a, mefev(G) = b.
Related Results
On the edge monophonic number of a graph
On the edge monophonic number of a graph
For a connected graph G = (V, E), an edge monophonic set of G is a set M?
V(G) such that every edge of G is contained in a monophonic path joining some
pair of vertices in M....
RESTRAINED DOUBLE MONOPHONIC NUMBER OF A GRAPH
RESTRAINED DOUBLE MONOPHONIC NUMBER OF A GRAPH
For a connected graph \(G\) of order at least two, a double monophonic set \(S\) of a graph \(G\) is a restrained double monophonic set if either \(S=V\) or the subgraph induced b...
BILANGAN KROMATIK EQUITABLE PADA GRAF BINTANG, GRAF LOLIPOP, DAN GRAF PERSAHABATAN
BILANGAN KROMATIK EQUITABLE PADA GRAF BINTANG, GRAF LOLIPOP, DAN GRAF PERSAHABATAN
Let G be a connected and undirected graph. Vertex coloring in a graph G is a mapping from the set of vertices in G to the set of colors such that every two adjacent vertices have d...
Domination of Polynomial with Application
Domination of Polynomial with Application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...
Determination and Analysis of Domination Numbers for Boundary Graph and Boundary Neighbour Graph Using MATLAB
Determination and Analysis of Domination Numbers for Boundary Graph and Boundary Neighbour Graph Using MATLAB
Vertex domination is a key concept in graph theory, essential for analyzing the structural properties of graphs. This study explores the use of vertex domination to determine the d...
The Forcing Circular Number of a Graph
The Forcing Circular Number of a Graph
Let S be a cr-set of graph G and let G be a connected graph. If S is the only cr-set that contains T, then a subset T⊆S is referred to be a forcing subset for S. A minimum forcing ...
The upper connected edge geodetic number of a graph
The upper connected edge geodetic number of a graph
For a non-trivial connected graph G, a set S ? V (G) is called an edge
geodetic set of G if every edge of G is contained in a geodesic joining some
pair of vertices in S. The...
Bilangan Kromatik Grap Commuting dan Non Commuting Grup Dihedral
Bilangan Kromatik Grap Commuting dan Non Commuting Grup Dihedral
Commuting graph is a graph that has a set of points X and two different vertices to be connected directly if each commutative in G. Let G non abelian group and Z(G) is a center of ...

