Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The edge-to-edge geodetic domination number of a graph

View through CrossRef
Let G = (V, E) be a connected graph with at least three vertices. A set S Í E is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to- edge geodetic domination number ¡gee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets and any edge-to-edge geodetic dominating set of minimum cardinality is said to be a gee- set of G. Some general properties satisfied by this concept are studied. Connected graphs of size m?2 with edge-to-geodetic domination number 2 or m or m-1 are charaterized. We proved that if G is a connected graph of size m ? 3 and G­ is also connected,then 4 ?¡gee(G) + ¡gee(G­) ? 2m -2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a and b with 2 ?a ? b, there exists a connected graph G with gee(G) = a and ¡gee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ? b, there exists a connected graph G with ¡e(G) = a and¡ gee(G) = b, where ¡e(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.
Universidad Catolica del Norte - Chile
Title: The edge-to-edge geodetic domination number of a graph
Description:
Let G = (V, E) be a connected graph with at least three vertices.
A set S Í E is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G.
The edge-to- edge geodetic domination number ¡gee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets and any edge-to-edge geodetic dominating set of minimum cardinality is said to be a gee- set of G.
Some general properties satisfied by this concept are studied.
Connected graphs of size m?2 with edge-to-geodetic domination number 2 or m or m-1 are charaterized.
We proved that if G is a connected graph of size m ? 3 and G­ is also connected,then 4 ?¡gee(G) + ¡gee(G­) ? 2m -2.
Moreover we characterized graphs for which the lower and the upper bounds are sharp.
It is shown that, for every pair of positive integers a and b with 2 ?a ? b, there exists a connected graph G with gee(G) = a and ¡gee(G) = b.
Also it is shown that, for every pair of positive integers a and b with 2 < a ? b, there exists a connected graph G with ¡e(G) = a and¡ gee(G) = b, where ¡e(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.

Related Results

Domination of Polynomial with Application
Domination of Polynomial with Application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...
The upper connected edge geodetic number of a graph
The upper connected edge geodetic number of a graph
For a non-trivial connected graph G, a set S ? V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The...
Domination of polynomial with application
Domination of polynomial with application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...
Determination and Analysis of Domination Numbers for Boundary Graph and Boundary Neighbour Graph Using MATLAB
Determination and Analysis of Domination Numbers for Boundary Graph and Boundary Neighbour Graph Using MATLAB
Vertex domination is a key concept in graph theory, essential for analyzing the structural properties of graphs. This study explores the use of vertex domination to determine the d...
THE FORCING EDGE FIXING EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH
THE FORCING EDGE FIXING EDGE-TO-VERTEX MONOPHONIC NUMBER OF A GRAPH
For a connected graph G = (V, E), a set Se ⊆ E(G)–{e} is called an edge fixing edge-to-vertex monophonic set of an edge e of a connected graph G if every vertex of G lies on an e –...
Fractional Domination Game
Fractional Domination Game
Given a graph $G$, a real-valued function $f: V(G) \rightarrow [0,1]$ is a fractional dominating function if $\sum_{u \in N[v]} f(u) \ge 1$ holds for every vertex $v$ and its close...
Extreme Outer Connected Geodesic Graphs
Extreme Outer Connected Geodesic Graphs
For a connected graph G of order at least two, a set S of vertices in a graph G is said to be an outer connected geodetic set if S is a geodetic set of G and either S = V or the su...
DOMINATION AND EDGE DOMINATION IN TREES
DOMINATION AND EDGE DOMINATION IN TREES
Let \(G=(V,E)\) be a simple graph. A set \(S\subseteq V\) is a dominating set if every vertex in \(V \setminus S\) is adjacent to a vertex in \(S\). The domination number of a grap...

Back to Top