Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras

View through CrossRef
Given a (quasi-)twilled pre-Lie algebra, we first construct a differential graded Lie algebra ([Formula: see text]-algebra). Then we study the twisting theory of (quasi-)twilled pre-Lie algebras and show that the result of the twisting by a linear map on a (quasi-)twilled pre-Lie algebra is also a (quasi-)twilled pre-Lie algebra if and only if the linear map is a solution of the Maurer–Cartan equation of the associated differential graded Lie algebra ([Formula: see text]-algebra). In particular, the relative Rota–Baxter operators (twisted relative Rota–Baxter operators) on pre-Lie algebras are solutions of the Maurer–Cartan equation of the differential graded Lie algebra ([Formula: see text]-algebra) associated to the certain quasi-twilled pre-Lie algebra. Finally, we use the twisting theory of (quasi-)twilled pre-Lie algebras to study quasi-pre-Lie bialgebras. Moreover, we give a construction of quasi-pre-Lie bialgebras through symplectic Lie algebras, which is parallel to that a Cartan [Formula: see text]-form on a semi-simple Lie algebra gives a quasi-Lie bialgebra.
Title: Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras
Description:
Given a (quasi-)twilled pre-Lie algebra, we first construct a differential graded Lie algebra ([Formula: see text]-algebra).
Then we study the twisting theory of (quasi-)twilled pre-Lie algebras and show that the result of the twisting by a linear map on a (quasi-)twilled pre-Lie algebra is also a (quasi-)twilled pre-Lie algebra if and only if the linear map is a solution of the Maurer–Cartan equation of the associated differential graded Lie algebra ([Formula: see text]-algebra).
In particular, the relative Rota–Baxter operators (twisted relative Rota–Baxter operators) on pre-Lie algebras are solutions of the Maurer–Cartan equation of the differential graded Lie algebra ([Formula: see text]-algebra) associated to the certain quasi-twilled pre-Lie algebra.
Finally, we use the twisting theory of (quasi-)twilled pre-Lie algebras to study quasi-pre-Lie bialgebras.
Moreover, we give a construction of quasi-pre-Lie bialgebras through symplectic Lie algebras, which is parallel to that a Cartan [Formula: see text]-form on a semi-simple Lie algebra gives a quasi-Lie bialgebra.

Related Results

Some Results on Quasi MV-Algebras and Perfect Quasi MV-Algebras
Some Results on Quasi MV-Algebras and Perfect Quasi MV-Algebras
Abstract Quasi MV-algebras are a generalization of MV-algebras and they are motivated by the investigation of the structure of quantum logical gates. In the first part, w...
Weak pseudo-BCK algebras
Weak pseudo-BCK algebras
Abstract In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BC...
Finitely Presented Heyting Algebras
Finitely Presented Heyting Algebras
In this paper we study the structure of finitely presented Heyting<br />algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every s...
3-Hom–Lie Yang–Baxter Equation and 3-Hom–Lie Bialgebras
3-Hom–Lie Yang–Baxter Equation and 3-Hom–Lie Bialgebras
In this paper, we first introduce the notion of a 3-Hom–Lie bialgebra and give an equivalent description of the 3-Hom–Lie bialgebras, the matched pairs and the Manin triples of 3-H...
Central invariants and enveloping algebras of braided Hom-Lie algebras
Central invariants and enveloping algebras of braided Hom-Lie algebras
Let (H,?) be a monoidal Hom-Hopf algebra and HH HYD the Hom-Yetter-Drinfeld category over (H,?). Then in this paper, we first introduce the definition of braided Hom-Lie alge...
Realizations of 3-Lie algebras
Realizations of 3-Lie algebras
3-Lie algebras have close relationships with many important fields in mathematics and mathematical physics. In this paper, we provide a construction of 3-Lie algebras in terms of L...
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
The purpose of this paper is to study the $\mathcal{O}$-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by $\mathcal{O}$-operators. Furthe...

Back to Top