Javascript must be enabled to continue!
Plasminogen interactions with platelets in plasma
View through CrossRef
Abstract
In this report we used a fluorescent flow cytometry-based assay to examine plasminogen binding to platelets in plasma. Our data indicate that platelets activated in platelet-rich plasma (PRP) by adenosine-5′- diphosphate (ADP) or thrombin bind plasminogen to their surface. Fab fragments of the monoclonal antibody LJ-CP8 that are directed against the fibrinogen binding site on the glycoprotein (GP) IIb-IIIa complex inhibit both plasminogen and fibrinogen binding to ADP-stimulated platelets as does 5 mmol/L EDTA. Platelet aggregation and plasminogen and fibrinogen binding are also concurrently inhibited by the Gly-Arg- Asp (RGD) analogue Gly-Arg-Gly-Asp-Ser (GRGDS) when it is added to PRP before ADP stimulation. The scrambled peptide analogue SDGRG has no effect. The monoclonal antibody 6D1, directed against the von Willebrand factor binding site on GPIb, has no effect on plasminogen- platelet binding, nor does antithrombospondin antibody. epsilon- Aminocaproic acid (EACA), however, inhibits plasminogen binding to ADP- activated platelets. These data indicate that plasminogen binds to platelets activated in plasma, that binding occurs on platelet GPIIb/IIIa, and that binding may be mediated via plasminogen association with fibrinogen via lysine binding domains. Finally, we found both plasminogen and fibrinogen on resting platelets in PRP and demonstrated that they are equally displaced by EDTA, LJ-CP8, and 10E5 (an additional anti-GPIIb/IIIa monoclonal antibody). Plasminogen is also equally displaced by EACA. These data suggest that plasminogen is also bound to GPIIb/IIIa on resting platelets, possibly also via interaction with fibrinogen.
Title: Plasminogen interactions with platelets in plasma
Description:
Abstract
In this report we used a fluorescent flow cytometry-based assay to examine plasminogen binding to platelets in plasma.
Our data indicate that platelets activated in platelet-rich plasma (PRP) by adenosine-5′- diphosphate (ADP) or thrombin bind plasminogen to their surface.
Fab fragments of the monoclonal antibody LJ-CP8 that are directed against the fibrinogen binding site on the glycoprotein (GP) IIb-IIIa complex inhibit both plasminogen and fibrinogen binding to ADP-stimulated platelets as does 5 mmol/L EDTA.
Platelet aggregation and plasminogen and fibrinogen binding are also concurrently inhibited by the Gly-Arg- Asp (RGD) analogue Gly-Arg-Gly-Asp-Ser (GRGDS) when it is added to PRP before ADP stimulation.
The scrambled peptide analogue SDGRG has no effect.
The monoclonal antibody 6D1, directed against the von Willebrand factor binding site on GPIb, has no effect on plasminogen- platelet binding, nor does antithrombospondin antibody.
epsilon- Aminocaproic acid (EACA), however, inhibits plasminogen binding to ADP- activated platelets.
These data indicate that plasminogen binds to platelets activated in plasma, that binding occurs on platelet GPIIb/IIIa, and that binding may be mediated via plasminogen association with fibrinogen via lysine binding domains.
Finally, we found both plasminogen and fibrinogen on resting platelets in PRP and demonstrated that they are equally displaced by EDTA, LJ-CP8, and 10E5 (an additional anti-GPIIb/IIIa monoclonal antibody).
Plasminogen is also equally displaced by EACA.
These data suggest that plasminogen is also bound to GPIIb/IIIa on resting platelets, possibly also via interaction with fibrinogen.
Related Results
Plasminogen interactions with platelets in plasma
Plasminogen interactions with platelets in plasma
In this report we used a fluorescent flow cytometry-based assay to examine plasminogen binding to platelets in plasma. Our data indicate that platelets activated in platelet-rich p...
Magnetohydrodynamics enhanced radio blackout mitigation system for spacecraft during planetary entries
Magnetohydrodynamics enhanced radio blackout mitigation system for spacecraft during planetary entries
(English) Spacecraft entering planetary atmospheres are enveloped by a plasma layer with high levels of ionization, caused by the extreme temperatures in the shock layer. The charg...
Comparative metabolism of plasminogen glycoforms I and II in the alloxan-diabetic rabbit
Comparative metabolism of plasminogen glycoforms I and II in the alloxan-diabetic rabbit
The metabolism of plasminogen glycoforms I and II was measured in alloxan-induced diabetic and in age-matched control rabbits. Radiolabeled plasminogen I and II were degraded signi...
Anti-Apoptotic Effect of Angelica Polysaccharide (APS) on Cryopreservation of Platelets
Anti-Apoptotic Effect of Angelica Polysaccharide (APS) on Cryopreservation of Platelets
Abstract
Background: Angelica Polysaccharide (APS) is from the root of Radix Angelicae Sinensis (Danggui). Danggui has been used for centuries to treat blood-deficie...
Plant Food Anthocyanins Induced Platelet Apoptosis Via BCL-2/BCL-XL Pathway
Plant Food Anthocyanins Induced Platelet Apoptosis Via BCL-2/BCL-XL Pathway
Abstract
Background: Platelets are versatile cells and play important roles in hemostasis/thrombosis, inflammation, and atherosclerosis. The pathogenesis of cardiova...
Binding of 99mTc Plasminogen on Fibrin
Binding of 99mTc Plasminogen on Fibrin
SummaryBinding of plasminogen to fibrin was studied in vitro and in vivo using 99mTc Glu- and Lys-plasminogen.Binding of Glu-plasminogen on the clot was not observed in vitro, and ...
Human Plasma And Platelet Factor V Levels As Measured By Radioimmunoassay
Human Plasma And Platelet Factor V Levels As Measured By Radioimmunoassay
Highly purified human Factor V was used for the development of a competitive double antibody radioimmunoassay (RIA) using 125I-human Factor V, burro anti-human Factor V antisera as...

