Javascript must be enabled to continue!
Waves in Periodically Layered Composites
View through CrossRef
Composite materials, unless they are quite thin, often include periodic layering, where laminated plates composed of alternating uniaxial plies in two or more directions result in more evenly distributed in-plane stiffness. The oriented plies can generally be reduced to a unit cell geometry which repeats throughout the laminate and is composed of sublayers each having highly directional in-plane stiffness, but identical out-of-plane properties. As the transverse isotropy of a uniaxial fibrous ply derives from the geometry of the two-phase material, composite laminates of these plies will have microscopic elastic stiffness tensors which change only in the plane of the laminate, as we saw in Chapter 1. The elastic properties normal to the laminate surface remain unchanged from ply to ply. In this chapter we take up the subject of waves in periodically layered plates. Unusual guided wave dispersion effects have been observed experimentally in periodically layered plates. Shull et al. found, for guided waves polarized in the vertical plane in plates of alternating aluminum and aramid–epoxy composites, that dispersion never scales with the frequency–thickness product, as it would in homogeneous isotropic, or layered transversely isotropic, plates. Instead, grouping of the mode curves has been observed. In an attempt to understand this behavior in terms of periodic layering, Auld et al. have analyzed the simpler case of SH wave propagation in periodically layered plates and have demonstrated that these observed phenomena can be attributed to the pass band and stop band structure caused by the periodic layering. In this section, we will show that Floquet modes play a critical role in the behavior of guided waves in plates that are periodically layered. To analyze the problem, we apply an extension of the stiffness matrix method of the previous chapter. Floquet modes, which are the characteristic modes for the infinite periodically layered medium, can be thought of as the analogy—in a periodically layered medium—to the quasilongitudinal and quasishear modes for the infinite homogeneous medium. On the topic of infinite periodic media, many calculations, both approximate and exact, have been performed to model elastic wave propagation in this important class of structures.
Oxford University Press
Title: Waves in Periodically Layered Composites
Description:
Composite materials, unless they are quite thin, often include periodic layering, where laminated plates composed of alternating uniaxial plies in two or more directions result in more evenly distributed in-plane stiffness.
The oriented plies can generally be reduced to a unit cell geometry which repeats throughout the laminate and is composed of sublayers each having highly directional in-plane stiffness, but identical out-of-plane properties.
As the transverse isotropy of a uniaxial fibrous ply derives from the geometry of the two-phase material, composite laminates of these plies will have microscopic elastic stiffness tensors which change only in the plane of the laminate, as we saw in Chapter 1.
The elastic properties normal to the laminate surface remain unchanged from ply to ply.
In this chapter we take up the subject of waves in periodically layered plates.
Unusual guided wave dispersion effects have been observed experimentally in periodically layered plates.
Shull et al.
found, for guided waves polarized in the vertical plane in plates of alternating aluminum and aramid–epoxy composites, that dispersion never scales with the frequency–thickness product, as it would in homogeneous isotropic, or layered transversely isotropic, plates.
Instead, grouping of the mode curves has been observed.
In an attempt to understand this behavior in terms of periodic layering, Auld et al.
have analyzed the simpler case of SH wave propagation in periodically layered plates and have demonstrated that these observed phenomena can be attributed to the pass band and stop band structure caused by the periodic layering.
In this section, we will show that Floquet modes play a critical role in the behavior of guided waves in plates that are periodically layered.
To analyze the problem, we apply an extension of the stiffness matrix method of the previous chapter.
Floquet modes, which are the characteristic modes for the infinite periodically layered medium, can be thought of as the analogy—in a periodically layered medium—to the quasilongitudinal and quasishear modes for the infinite homogeneous medium.
On the topic of infinite periodic media, many calculations, both approximate and exact, have been performed to model elastic wave propagation in this important class of structures.
Related Results
Layered Materials: Oxides and Hydroxides
Layered Materials: Oxides and Hydroxides
Abstract
Layered compounds exhibit various properties based on their layered structures. The most typical chemical property is the intercalation reaction, which most laye...
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are super...
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
The goal of current research is to replace synthetic materials with natural, biodegradable, and renewable ones. Natural fiber composites are extensively studied due to their unique...
Unidirectional fibre reinforced geopolymer matrix composites
Unidirectional fibre reinforced geopolymer matrix composites
<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high tem...
High performance bio-based composites : mechanical and environmental durability
High performance bio-based composites : mechanical and environmental durability
The presented work is a part of the ongoing effort on the development of high performance bio-based composites with enhanced durability, under static and dynamic mechanical loading...
Oscillatory frequencies in spatiotemporal system with local inhomogeneity
Oscillatory frequencies in spatiotemporal system with local inhomogeneity
Target waves usually emit concentric circular waves, whereas spiral waves rotate around a central core (topological defect) region, the two forms of waves are closely related due t...
Direct Electromagnetic Wave Scattering Calculation Using Methods of Moments through Layered Rough Surface
Direct Electromagnetic Wave Scattering Calculation Using Methods of Moments through Layered Rough Surface
This thesis focuses on the direct calculation of electromagnetic wave scattering through layered rough surfaces using the Method of Moments. The study aims to contribute to existin...
Generation and modulation of shock waves in two-dimensional polariton condensates
Generation and modulation of shock waves in two-dimensional polariton condensates
Due to the ability of exciton-polariton condensates formed in semiconductor microcavities to be achieved at room temperature and their characteristics such as non-equilibrium and s...

