Javascript must be enabled to continue!
Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Novel Microchannel Heat Sink
View through CrossRef
Microchannel heat sinks have gained prominence in the field of thermal management, offering compact and efficient solutions for dissipating heat flux from high performance electronic devices. Escalating heat flux in modern electronic devices, such as those found in telecommunication equipment, industrial automation equipment, solar devices, and data centre servers has driven the continuous development of microchannel heat sink to achieve efficient thermal management. The critical challenge in thermal management for these devices is to develop a microchannel that enhances heat transfer performance and minimises pressure drop. Heat transfer and pressure drop are two competing factors that determine the practicability of the design for real world application. Improvement in heat transfer performance usually results in an increase in pressure drop and pumping power. This study addresses the challenges of designing microchannel through comprehensive numerical analysis of fluid flow and heat transfer characteristics of a novel design that combines ribs, secondary channels, and tertiary channels. The numerical results showed that the novel microchannel design achieves a favourable balance between heat transfer and pressure drop, demonstrating its potential to be used in application where high heat transfer and efficiency are paramount. To assess the performance of the microchannels, thermal resistance, a measure of system’s resistance to heat transfer is used. At the same pumping power, thermal resistance in the new design is consistently lower compared to other designs.
Akademia Baru Publishing
Title: Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Novel Microchannel Heat Sink
Description:
Microchannel heat sinks have gained prominence in the field of thermal management, offering compact and efficient solutions for dissipating heat flux from high performance electronic devices.
Escalating heat flux in modern electronic devices, such as those found in telecommunication equipment, industrial automation equipment, solar devices, and data centre servers has driven the continuous development of microchannel heat sink to achieve efficient thermal management.
The critical challenge in thermal management for these devices is to develop a microchannel that enhances heat transfer performance and minimises pressure drop.
Heat transfer and pressure drop are two competing factors that determine the practicability of the design for real world application.
Improvement in heat transfer performance usually results in an increase in pressure drop and pumping power.
This study addresses the challenges of designing microchannel through comprehensive numerical analysis of fluid flow and heat transfer characteristics of a novel design that combines ribs, secondary channels, and tertiary channels.
The numerical results showed that the novel microchannel design achieves a favourable balance between heat transfer and pressure drop, demonstrating its potential to be used in application where high heat transfer and efficiency are paramount.
To assess the performance of the microchannels, thermal resistance, a measure of system’s resistance to heat transfer is used.
At the same pumping power, thermal resistance in the new design is consistently lower compared to other designs.
Related Results
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular,...
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
In the present study, a multi-variable comparative study of the effect of microchannel heat sink configurations on their thermal performance is conducted by numerically simulating ...
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Numerical Model Validation
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Numerical Model Validation
Miniaturization and utilization of low-dimensional structures of recent electronic devices have witnessed some new micro cooling methods which can fulfil the cooling demand for the...
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Experimental Analysis
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Experimental Analysis
Miniaturization and utilization of low-dimensional structures of recent electronic devices have witnessed some new micro cooling methods which can fulfil the cooling demand for the...
Thermal–Hydrodynamic Behavior and Design of a Microchannel Pin-Fin Hybrid Heat Sink
Thermal–Hydrodynamic Behavior and Design of a Microchannel Pin-Fin Hybrid Heat Sink
A three-dimensional convective heat transfer model of a microchannel pin-fin hybrid heat sink was established. Considering the non-uniform heat generation of 3D stacked chips, the ...
Performance Evaluation of Concentrated Photovoltaic System Using a Microchannel Heat Sink
Performance Evaluation of Concentrated Photovoltaic System Using a Microchannel Heat Sink
The high incident heat flux on the concentrated photovoltaic (CPV) system causes a significant increase in the cell temperature and thus reduces the system efficiency. Therefore, u...
Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
This paper presents a numerical investigation for two types of grooves (rectangular and arc shapes) fabricated in the microchannel surfaces, which leads to enhancement in single-ph...
Multi‐objective optimization design of a micro‐channel heat sink using adaptive genetic algorithm
Multi‐objective optimization design of a micro‐channel heat sink using adaptive genetic algorithm
PurposeThe purpose of this paper is to show how, with a view to the shortcomings of traditional optimization methods, a multi‐objective optimization concerning the structure sizes ...


