Javascript must be enabled to continue!
Geological history and supercontinent cycles of the Arctic
View through CrossRef
AbstractThe geological history of the Arctic is constrained within the framework of the assembly and breakup of three supercontinents. The first of these was preceded by the crystallization of the oldest dated rocks on Earth and consolidation of the Arctic region’s Archean cratons between 2.82 and 2.54 Ga. Following the emplacement of regional mafic dike swarms between 2.51 and 2.03 Ga, the cratons were amalgamated into the Nuna (Columbia) supercontinent between 2.0 and 1.6 Ga, and the distribution of low-thermalgradient eclogite (indicative of continental subduction) and ophiolite (indicative of obduction of oceanic crust onto a continental margin) suggests that diagnostic plate-tectonic processes were well in place by the early Paleoproterozoic. Basin formation, flood basalts, and dike swarms are features of the partial(?) breakup of Nuna (Columbia) by 1.5–1.27 Ga. The extent to which specific dike swarms led to continental breakup and a rift-to-drift transition remains unclear. Assembly of the second supercontinent (Rodinia, 1.4–0.9 Ga) is recorded by a network of Grenvillian and Sveconorwegian collisional orogenic belts. Prominent features of Rodinia breakup (780–615 Ma) in the Arctic are extensive dike swarms and regional-scale glacial-periglacial deposits associated with the Sturtian (717–661 Ma) and Marinoan (ca. 645 ± 6 to ca. 635 Ma) snowball Earth glaciations. Assembly of the third supercontinent, Pangea, between 600 Ma and ca. 250 Ma, was accomplished through stitching of four orogens in the Arctic (Timan-Varanger, Caledonian, Ellesmerian, and Urals-Taymyr). Pangea breakup (rifting since 250 Ma and oceanic spreading since the Cretaceous) led to the emplacement of Cretaceous and Paleogene flood basalts, new oceanic crust in the Labrador Sea, North Atlantic Ocean, and Arctic Ocean, and orogens characterized by relatively small but far-traveled accreted terranes with provenance in Laurentia, Baltica, and Siberia. Paleogeographic similarities and geological correlations among Laurentia, Baltica, Siberia, and the North China craton suggest that Rodinia formed following incomplete breakup of Nuna (Columbia) and/or by introversion, whereas unique paleogeographic traits for Pangea within the Arctic region point to supercontinent formation by extroversion.
Title: Geological history and supercontinent cycles of the Arctic
Description:
AbstractThe geological history of the Arctic is constrained within the framework of the assembly and breakup of three supercontinents.
The first of these was preceded by the crystallization of the oldest dated rocks on Earth and consolidation of the Arctic region’s Archean cratons between 2.
82 and 2.
54 Ga.
Following the emplacement of regional mafic dike swarms between 2.
51 and 2.
03 Ga, the cratons were amalgamated into the Nuna (Columbia) supercontinent between 2.
0 and 1.
6 Ga, and the distribution of low-thermalgradient eclogite (indicative of continental subduction) and ophiolite (indicative of obduction of oceanic crust onto a continental margin) suggests that diagnostic plate-tectonic processes were well in place by the early Paleoproterozoic.
Basin formation, flood basalts, and dike swarms are features of the partial(?) breakup of Nuna (Columbia) by 1.
5–1.
27 Ga.
The extent to which specific dike swarms led to continental breakup and a rift-to-drift transition remains unclear.
Assembly of the second supercontinent (Rodinia, 1.
4–0.
9 Ga) is recorded by a network of Grenvillian and Sveconorwegian collisional orogenic belts.
Prominent features of Rodinia breakup (780–615 Ma) in the Arctic are extensive dike swarms and regional-scale glacial-periglacial deposits associated with the Sturtian (717–661 Ma) and Marinoan (ca.
645 ± 6 to ca.
635 Ma) snowball Earth glaciations.
Assembly of the third supercontinent, Pangea, between 600 Ma and ca.
250 Ma, was accomplished through stitching of four orogens in the Arctic (Timan-Varanger, Caledonian, Ellesmerian, and Urals-Taymyr).
Pangea breakup (rifting since 250 Ma and oceanic spreading since the Cretaceous) led to the emplacement of Cretaceous and Paleogene flood basalts, new oceanic crust in the Labrador Sea, North Atlantic Ocean, and Arctic Ocean, and orogens characterized by relatively small but far-traveled accreted terranes with provenance in Laurentia, Baltica, and Siberia.
Paleogeographic similarities and geological correlations among Laurentia, Baltica, Siberia, and the North China craton suggest that Rodinia formed following incomplete breakup of Nuna (Columbia) and/or by introversion, whereas unique paleogeographic traits for Pangea within the Arctic region point to supercontinent formation by extroversion.
Related Results
Arctic Drilling Hazard Identification Relating to Salt Tectonics
Arctic Drilling Hazard Identification Relating to Salt Tectonics
Abstract
The focus of this study is to improve our technical understanding of anticipated drilling hazards in the Arctic Circle, especially hazards relating to drill...
Russian Arctic Petroleum Resources: Challenges and Future Opportunities
Russian Arctic Petroleum Resources: Challenges and Future Opportunities
Abstract
The Arctic continental shelf is believed to be the area with the highest unexplored potential for oil and gas as well as to unconventional hydrocarbon re...
The Visegrad Group’s Approach to the Arctic: Which (Sub-Regional) Policies?
The Visegrad Group’s Approach to the Arctic: Which (Sub-Regional) Policies?
The Visegrád countries (or V4) are increasingly showing interest in the Arctic region. With different levels of engagement, the four countries carry on diplomatic, economic, and sc...
Litter and Microplastics: Environmental monitoring in the Arctic
Litter and Microplastics: Environmental monitoring in the Arctic
<p>While the Arctic Ecosystem is already stressed by the effects of the climate crisis, another threat is emerging: plastics. Plastic pollution has become an environm...
Zoom in - zoom out challenge: Semantically and visually coherent overview geological maps of Poland
Zoom in - zoom out challenge: Semantically and visually coherent overview geological maps of Poland
Standardisation of geological maps visualisation is crucial for improving data legibility and comparison across different scales and regions. In Poland, overview geological maps ra...
P-668 The LH endocrine profile in Gonadotropin-Releasing Hormone analogue cycles
P-668 The LH endocrine profile in Gonadotropin-Releasing Hormone analogue cycles
Abstract
Study question
What does the evolution of luteinizing hormone (LH) throughout the follicular phase look like in differe...
Differences in Arctic sea ice simulations from various SODA3 data sets
Differences in Arctic sea ice simulations from various SODA3 data sets
<p>SODA (Simple Ocean Data Assimilation) is one of the ocean reanalysis data widely used in oceanographic research. The SODA3 dataset provides multiple ocean reanalys...
Measures to Combat Offshore Artie Oil Spills
Measures to Combat Offshore Artie Oil Spills
Abstract
This paper is based on a portion of a continuous current-awareness literature survey on the varied facets of the overall problems of pollution by oil spi...

