Javascript must be enabled to continue!
Effect of Reservoir Temperature and Pressure on Relative Permeability
View through CrossRef
Abstract
Relative permeability is a critical parameter for evaluation of gas reservoir performances. Earlier works have indicated that relative permeabilities are markedly dependent on pore geometry, wettability, fluid saturation, saturation history, reservoir temperature, reservoir pressure, overburden pressure, rock types, porosity and permeability types. Some literatures have reported effect of reservoir temperature, reservoir pressure, overburden pressure on relative permeability. Because we are subjected to experiment conditions, it is very difficult for Dabei naturally fractured gas reservoir to measure relative permeability under 120 MPa abnormal high pressure and 145 Centigrade high temperature. In this paper, relative permeability of 12 cores without fracture and 3 cores with fracture during displacement of water by gas and displacement of gas by water in Dabei naturally fractured gas reservoirs under lower pressure and room temperature was measured. The results indicated that relative permeability in the process of displacement of water by gas is obviously different from that in the process of displacement of gas by water. Gas-water relative permeabilities of rock with fracture are higher than that of rock without fracture. In order to evaluate effect of abnormal high pressure and high temperature on relative permeability. A transformation model of gas-water relative permeability from experiment conditions to reservoir conditions was built up. A high temperature and high pressure wells for example, the effect of temperature and pressure on gas-water permeability was analog calculated, which the result indicated that water relative permeability cannot be effected by temperature and pressure, but gas relative permeability is. While gas relative permeability measured at experiment temperature and pressure which is beyond 10 times difference than the high pressure and high temperature at reservoir condition. It is suggested that it is unadvisable to predict gas reservoir performance by using gas-water relative permeability measured at experiment conditions.
Title: Effect of Reservoir Temperature and Pressure on Relative Permeability
Description:
Abstract
Relative permeability is a critical parameter for evaluation of gas reservoir performances.
Earlier works have indicated that relative permeabilities are markedly dependent on pore geometry, wettability, fluid saturation, saturation history, reservoir temperature, reservoir pressure, overburden pressure, rock types, porosity and permeability types.
Some literatures have reported effect of reservoir temperature, reservoir pressure, overburden pressure on relative permeability.
Because we are subjected to experiment conditions, it is very difficult for Dabei naturally fractured gas reservoir to measure relative permeability under 120 MPa abnormal high pressure and 145 Centigrade high temperature.
In this paper, relative permeability of 12 cores without fracture and 3 cores with fracture during displacement of water by gas and displacement of gas by water in Dabei naturally fractured gas reservoirs under lower pressure and room temperature was measured.
The results indicated that relative permeability in the process of displacement of water by gas is obviously different from that in the process of displacement of gas by water.
Gas-water relative permeabilities of rock with fracture are higher than that of rock without fracture.
In order to evaluate effect of abnormal high pressure and high temperature on relative permeability.
A transformation model of gas-water relative permeability from experiment conditions to reservoir conditions was built up.
A high temperature and high pressure wells for example, the effect of temperature and pressure on gas-water permeability was analog calculated, which the result indicated that water relative permeability cannot be effected by temperature and pressure, but gas relative permeability is.
While gas relative permeability measured at experiment temperature and pressure which is beyond 10 times difference than the high pressure and high temperature at reservoir condition.
It is suggested that it is unadvisable to predict gas reservoir performance by using gas-water relative permeability measured at experiment conditions.
Related Results
Capillary Pressure Effect on Injected Water Movement and Upscaled Relative Permeability in a Heterogeneous Carbonate Reservoir
Capillary Pressure Effect on Injected Water Movement and Upscaled Relative Permeability in a Heterogeneous Carbonate Reservoir
Abstract
This paper presents the effect of capillary pressure on injected water movement in a fine grid numerical simulation model and demonstrates the necessity ...
Rock Permeability Measurements Using Drilling Cutting
Rock Permeability Measurements Using Drilling Cutting
Abstract
The current available equipment used in the laboratory to measure permeability of the core samples is very limited. This is because permeability is measu...
Hierarchical Geomodeling Approach for Ultra High Permeability Reservoir
Hierarchical Geomodeling Approach for Ultra High Permeability Reservoir
Abstract
The lacustrine delta sandbody deposited in the north of Albert Basin is unconsolidated due to the shallow burial depth, which leads to an ultra-high permeab...
Genetic-Like Modelling of Hydrothermal Dolomite Reservoir Constrained by Dynamic Data
Genetic-Like Modelling of Hydrothermal Dolomite Reservoir Constrained by Dynamic Data
This reference is for an abstract only. A full paper was not submitted for this conference.
Abstract
Descr...
The Fractures Optimization Method with the Threshold Pressure of Multistage Fracturing in Tight Oil Reservoir
The Fractures Optimization Method with the Threshold Pressure of Multistage Fracturing in Tight Oil Reservoir
Abstract
As permeability of tight oil reservoir is generally less than 0.1md, diameters of pore throats are primarily at the micrometer- and nanometer-scale. Differe...
Relative Permeability Effects on the Migration of Steamflood Saturation Fronts
Relative Permeability Effects on the Migration of Steamflood Saturation Fronts
Abstract
The effects of various relative permeability-saturation relationships on the movement of water saturation fronts during steamflooding is investigated. Em...
Stress-Dependent Permeability: Characterization and Modeling
Stress-Dependent Permeability: Characterization and Modeling
Abstract
During the production lifecycle of a reservoir, absolute permeability at any given location may change in response to an increase in the net effective stres...
In Situ Permeability-porosity Relationship In Clean Formations
In Situ Permeability-porosity Relationship In Clean Formations
Abstract
The results of several investigations showed that rock properties under in-situ stress conditions can be significantly different from those measured at n...


