Javascript must be enabled to continue!
Numerical simulation and experiment of double chamber brake based on CFD
View through CrossRef
AbstractThe artillery firing process will instantly produce high-temperature and high-pressure gunpowder gas, this process will produce shock waves. The gunpowder gas has a limited effect on the projectile during the firing and ballistic after-effects period, however, it has a very obvious effect on the stability of the gun body, and the reduction of the stability of the gun body directly affects the firing accuracy and the safety of the firing personnel. Based on the method of Computational Fluid Dynamics (CFD), numerical simulation is carried out, and the structure and flow parameters of the muzzle flow field are obtained by using three-dimensional Euler's control equation, gas equation of state, and k-epsilon model, as well as dynamic mesh technology. By comparing the flow parameters of the brake before and after optimization, and analyzing the results obtained from the 8-round firing experiments, the efficiency of the optimized brake is increased by 8.2%, and the deviation between the experimental data and the simulation results is only 10.5%, which not only verifies the accuracy of the numerical simulation calculations but also verifies the optimized brake's good retracting effect. The results of the study can provide a reference for the optimization and design of the double-chamber brake.
Title: Numerical simulation and experiment of double chamber brake based on CFD
Description:
AbstractThe artillery firing process will instantly produce high-temperature and high-pressure gunpowder gas, this process will produce shock waves.
The gunpowder gas has a limited effect on the projectile during the firing and ballistic after-effects period, however, it has a very obvious effect on the stability of the gun body, and the reduction of the stability of the gun body directly affects the firing accuracy and the safety of the firing personnel.
Based on the method of Computational Fluid Dynamics (CFD), numerical simulation is carried out, and the structure and flow parameters of the muzzle flow field are obtained by using three-dimensional Euler's control equation, gas equation of state, and k-epsilon model, as well as dynamic mesh technology.
By comparing the flow parameters of the brake before and after optimization, and analyzing the results obtained from the 8-round firing experiments, the efficiency of the optimized brake is increased by 8.
2%, and the deviation between the experimental data and the simulation results is only 10.
5%, which not only verifies the accuracy of the numerical simulation calculations but also verifies the optimized brake's good retracting effect.
The results of the study can provide a reference for the optimization and design of the double-chamber brake.
Related Results
Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes
Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes
<div class="section abstract"><div class="htmlview paragraph">Using friction brakes for long time can increase easily its temperature and lower vehicle brake performanc...
Redundant Brake Boost Control Strategy of Integrated
Electro-hydraulic Braking System
Redundant Brake Boost Control Strategy of Integrated
Electro-hydraulic Braking System
<div class="section abstract"><div class="htmlview paragraph">The traditional braking system has been unable to meet the redundant safety
requiremen...
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
In the late 1970’s, Benckert and Wachter (Technical University Stuttgart) tested labyrinth seals using air as the test media and measured direct and cross-coupled stiffness coeffic...
The Experimental and Simulational Analysis on Drum Brake Squeal by Structurally Closed-Loop Coupling Model
The Experimental and Simulational Analysis on Drum Brake Squeal by Structurally Closed-Loop Coupling Model
<div class="htmlview paragraph">In this paper, the structurally closed loop coupling model of drum brake squeal is established on the basis of experimental study. The relevan...
Design Optimization of Disc Brake Rotor
Design Optimization of Disc Brake Rotor
<div class="section abstract"><div class="htmlview paragraph">An ever-increasing need for effective transportation requires improved safety and
main...
Experimental Evaluation of Brake Response Time on Motorcycle Brake Lamp
Experimental Evaluation of Brake Response Time on Motorcycle Brake Lamp
Rear-end collisions are one of the highest contributors to road accidents fatalities, especially motorcycles which made up to 60% of the total of accidents that occur. The reasons ...
Influence of initial braking velocity and braking frequency on tribological performance of non‐asbestos brake shoe
Influence of initial braking velocity and braking frequency on tribological performance of non‐asbestos brake shoe
PurposeThe purpose of this paper is to find the influence of the initial braking velocity and braking frequency on the tribological performance of the non‐asbestos brake shoe used ...
Analytical Investigation of Tire Induced Particle Emissions
Analytical Investigation of Tire Induced Particle Emissions
Research and/or Engineering Question/Objective: The fine dust contribution (<10µm) of motor vehicles represents a considerable health risk for people in urban areas. Due to an i...

