Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Variation characteristics of mesoscale lakes in the Tibetan Plateau

View through CrossRef
Known as “Water Tower of Asia”, the Tibetan Plateau (TP) is widely distributed with numerous inflow lakes. Lakes on the TP are less affected by human actives and can be considered as a sensitive indicator of climate change, changes of lakes can well reflect the change of regional climate. However, due to the harsh environment, data acquisition is not easy, studies on the response of lake change to climate mainly focus on several typical lakes (Nam Co, Selin Co Ngoring lake, etc.), but less attention is paid to variation characteristics of mesoscale lake (~100km2). To compensate for this deficiency, we selected three typical mesoscale lakes (Bamu Co, Langa Co and Longmu Co) in different climate zones and studied the lake changes and their responses to climate change using in-situ observations data and remote sensing data. By using multisource remote sensing and water level observation data, this study systematically analyzed inter-annual changes from 1970 to 2021 and monthly changes from 2019 to 2021. The main conclusions are as follows: (1) The changes to lakes in different climatic regions are different: lakes in the monsoon-dominated region showed a significant trend of expansion from 2000 to 2014, but the trend slowed down and stabilized after 2014; lakes in the westerlies-dominated region showed a small expansion trend; lakes in the region affected by both westerlies and the monsoon showed an overall shrinking trend. (2) The monthly variation of lake water volume showed a periodical trend of first increasing and then decreasing, with the largest relative change of lake water volume in August and September. (3) Temperature and precipitation are dominant meteorological elements affecting the variation of lakes, and with the warming of the TP, temperature plays an increasingly important role. Combining observational data and remote sensing data, the study of mesoscale lakes changes can increase the understanding of relationship between lake change and climate change, provide help for further study of lake - atmosphere interaction and climate effect and climate change in the TP.Key words: Tibetan Plateau; mesoscale lakes; change of lake water volume; multisource altimetry data; in-situ observation; climate zones
Title: Variation characteristics of mesoscale lakes in the Tibetan Plateau
Description:
Known as “Water Tower of Asia”, the Tibetan Plateau (TP) is widely distributed with numerous inflow lakes.
Lakes on the TP are less affected by human actives and can be considered as a sensitive indicator of climate change, changes of lakes can well reflect the change of regional climate.
However, due to the harsh environment, data acquisition is not easy, studies on the response of lake change to climate mainly focus on several typical lakes (Nam Co, Selin Co Ngoring lake, etc.
), but less attention is paid to variation characteristics of mesoscale lake (~100km2).
To compensate for this deficiency, we selected three typical mesoscale lakes (Bamu Co, Langa Co and Longmu Co) in different climate zones and studied the lake changes and their responses to climate change using in-situ observations data and remote sensing data.
By using multisource remote sensing and water level observation data, this study systematically analyzed inter-annual changes from 1970 to 2021 and monthly changes from 2019 to 2021.
The main conclusions are as follows: (1) The changes to lakes in different climatic regions are different: lakes in the monsoon-dominated region showed a significant trend of expansion from 2000 to 2014, but the trend slowed down and stabilized after 2014; lakes in the westerlies-dominated region showed a small expansion trend; lakes in the region affected by both westerlies and the monsoon showed an overall shrinking trend.
(2) The monthly variation of lake water volume showed a periodical trend of first increasing and then decreasing, with the largest relative change of lake water volume in August and September.
(3) Temperature and precipitation are dominant meteorological elements affecting the variation of lakes, and with the warming of the TP, temperature plays an increasingly important role.
Combining observational data and remote sensing data, the study of mesoscale lakes changes can increase the understanding of relationship between lake change and climate change, provide help for further study of lake - atmosphere interaction and climate effect and climate change in the TP.
Key words: Tibetan Plateau; mesoscale lakes; change of lake water volume; multisource altimetry data; in-situ observation; climate zones.

Related Results

The Tibetan Plateau Lakes: Early-stage research progress of observational evidence as catalysts for weather patterns
The Tibetan Plateau Lakes: Early-stage research progress of observational evidence as catalysts for weather patterns
The Tibetan Plateau, known as the “Roof of the World,” hosts numerous lakes that play a pivotal role in triggering and modulating regional and even global weath...
Anticipating future ice-dammed lakes across High Mountain Asia
Anticipating future ice-dammed lakes across High Mountain Asia
<p>Over recent decades, a significant increase in the amount and the size of glacier lakes has been observed. These lakes enhance glacier mass loss but also present s...
Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology
Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology
AbstractIn much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there i...
Observational studies of water surface Evaporation on inland lake over the classical Tibetan Plateau
Observational studies of water surface Evaporation on inland lake over the classical Tibetan Plateau
To understand how the changing process of lake water level and area in Tibetan Plateau effects on the dynamic process of water resources in the surrounding area is very important. ...
Characterization of bacterial community dynamics dominated by salinity in lakes of the Inner Mongolian Plateau, China
Characterization of bacterial community dynamics dominated by salinity in lakes of the Inner Mongolian Plateau, China
Microorganisms in lakes are sensitive to salinity fluctuations. Despite extensive prior research on bacterial communities, our understanding of their characteristics and assembly m...
Spontaneous near-inertial wave generation from mesoscale eddy: Energy transformation
Spontaneous near-inertial wave generation from mesoscale eddy: Energy transformation
The energy transformation between inertial oscillations (IOs), near-inertial waves (NIWs), and mesoscale eddies during spontaneous NIW generation is analyzed by the kinetic energy ...
Evolution of an Ancient Large Lake in the Southeast of the Northern Tibetan Plateau
Evolution of an Ancient Large Lake in the Southeast of the Northern Tibetan Plateau
Abstract  Nam Co is the largest (1920 km2 in area) and highest (4718 m above sea level) lake in Tibet. According to the discovery of lake terraces and highstand lacustrine deposits...

Back to Top