Javascript must be enabled to continue!
Modulatory effects of catechin hydrate on benzo[a]pyrene-induced nephrotoxicity in adult male albino rats
View through CrossRef
Abstract
Benzo [a] pyrene (B[a]P) is a potent mutagen and carcinogen, considered one of the commonest concomitants in the environment. The study aimed to evaluate the effect of catechin hydrate on benzo pyrene-induced kidney toxicity. Thirty-six adult male albino rats were divided into six groups: group I untreated control, group II received 10 mL/kg of corn oil (solvent of benzo [a] pyrene) twice a week, group III received 1 mL/kg 0.5% dimethyl sulfoxide (DMSO) (solvent of catechin) once per day, group IV received 50 mg/kg body weight of benzo[a]pyrene twice a week, group V received 20 mg/kg body weight of catechin in 1 mL/kg 0.5% DMSO once daily, and group VI received both catechin+benzo [a] pyrene with the same doses. All treatment was given by oral gavage for four weeks. At the end of the experiment, blood samples were collected for biochemical investigations, tissues were obtained for genotoxicity, RT-PCR, and histopathological studies. B[a]P exposure induced an increase in serum urea and creatinine levels along with severe renal histopathological changes. Our results showed a subsequent decrease in the antioxidant enzyme activities (catalase and superoxide dismutase), and conversely, (malondialdehyde) levels markedly elevated. Also, B[a]P induced DNA damage as well as activated an apoptotic pathway confirmed by upregulation of Bax, caspase-3, and downregulation of Bcl-2 expression. However, treatment with catechin-corrected kidney functions and antioxidant enzymes as well as regulated apoptosis. Histological results also supported the protective effects of catechin. These findings suggested that catechin hydrate is an effective natural product that attenuates benzo pyrene-induced kidney toxicity.
Oxford University Press (OUP)
Title: Modulatory effects of catechin hydrate on benzo[a]pyrene-induced nephrotoxicity in adult male albino rats
Description:
Abstract
Benzo [a] pyrene (B[a]P) is a potent mutagen and carcinogen, considered one of the commonest concomitants in the environment.
The study aimed to evaluate the effect of catechin hydrate on benzo pyrene-induced kidney toxicity.
Thirty-six adult male albino rats were divided into six groups: group I untreated control, group II received 10 mL/kg of corn oil (solvent of benzo [a] pyrene) twice a week, group III received 1 mL/kg 0.
5% dimethyl sulfoxide (DMSO) (solvent of catechin) once per day, group IV received 50 mg/kg body weight of benzo[a]pyrene twice a week, group V received 20 mg/kg body weight of catechin in 1 mL/kg 0.
5% DMSO once daily, and group VI received both catechin+benzo [a] pyrene with the same doses.
All treatment was given by oral gavage for four weeks.
At the end of the experiment, blood samples were collected for biochemical investigations, tissues were obtained for genotoxicity, RT-PCR, and histopathological studies.
B[a]P exposure induced an increase in serum urea and creatinine levels along with severe renal histopathological changes.
Our results showed a subsequent decrease in the antioxidant enzyme activities (catalase and superoxide dismutase), and conversely, (malondialdehyde) levels markedly elevated.
Also, B[a]P induced DNA damage as well as activated an apoptotic pathway confirmed by upregulation of Bax, caspase-3, and downregulation of Bcl-2 expression.
However, treatment with catechin-corrected kidney functions and antioxidant enzymes as well as regulated apoptosis.
Histological results also supported the protective effects of catechin.
These findings suggested that catechin hydrate is an effective natural product that attenuates benzo pyrene-induced kidney toxicity.
Related Results
New Experimental Equipment for Hydrate Dissociation Studies
New Experimental Equipment for Hydrate Dissociation Studies
Abstract
A new experimental set up dedicated to the hydrate dissociation studies is presented. In this new equipment, hydrate dissociation can be achieved by depr...
Experimental Study on the Change of Resistivity of Synthetic Methane Hydrate Under Different Saturation and Clay Composition Conditions
Experimental Study on the Change of Resistivity of Synthetic Methane Hydrate Under Different Saturation and Clay Composition Conditions
The electric characteristics of a hydrate reservoir are the basis for evaluating porosity and saturation. Because drilling hydrate core samples are unstable at ambient temperature ...
Permeability of Laboratory-Formed Hydrate-Bearing Sand
Permeability of Laboratory-Formed Hydrate-Bearing Sand
Abstract
Methane hydrate was formed in moist sand under a confining stress in a long, x-ray transparent pressure vessel. Three initial water saturations were used...
Assessment And Quantification Of The Hydrate Geohazard
Assessment And Quantification Of The Hydrate Geohazard
Abstract
Recent hydrate assessments from the Ocean Drilling Programme (ODP) and the Mallik Test site have advanced the techniques of hydrate detection and evaluat...
Studies on Methane Gas Hydrate Formation Kinetics Enhanced by Isopentane and Sodium Dodecyl Sulfate Promoters for Seawater Desalination
Studies on Methane Gas Hydrate Formation Kinetics Enhanced by Isopentane and Sodium Dodecyl Sulfate Promoters for Seawater Desalination
Methane hydrate applications in gas storage and desalination have attracted increasing attention in recent years. In the present work, the effect of isopentane (IP), sodium dodecyl...
The Dissociation Rate Measurement for Natural Gas Recovery From Gas Hydrates
The Dissociation Rate Measurement for Natural Gas Recovery From Gas Hydrates
Abstract
Hydrate self-preservation property has been reported by some researchers in recent years. So as to test the dissociation rate of hydrates in different te...
THE VELOCITY DISPERSION AND ATTENUATION OF MARINE HYDRATE‐BEARING SEDIMENTS
THE VELOCITY DISPERSION AND ATTENUATION OF MARINE HYDRATE‐BEARING SEDIMENTS
AbstractP‐wave and S‐wave velocity will increase and the attenuation will vary when the concentration of gas hydrate increases. The analysis of velocity dispersion and attenuation ...
Improved industrial induction time-based technique for evaluating kinetic hydrate inhibitors
Improved industrial induction time-based technique for evaluating kinetic hydrate inhibitors
Kinetic hydrate inhibitor laboratory testing before field application is one of the key priorities in the oil and gas industry. The common induction-time-based technique is often u...

