Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Invariants of quantum programs: characterisations and generation

View through CrossRef
Program invariant is a fundamental notion widely used in program verification and analysis. The aim of this paper is twofold: (i) find an appropriate definition of invariants for quantum programs; and (ii) develop an effective technique of invariant generation for verification and analysis of quantum programs. Interestingly, the notion of invariant can be defined for quantum programs in two different ways -- additive invariants and multiplicative invariants -- corresponding to two interpretations of implication in a continuous valued logic: the Lukasiewicz implication and the Godel implication. It is shown that both of them can be used to establish partial correctness of quantum programs. The problem of generating additive invariants of quantum programs is addressed by reducing it to an SDP (Semidefinite Programming) problem. This approach is applied with an SDP solver to generate invariants of two important quantum algorithms -- quantum walk and quantum Metropolis sampling. Our examples show that the generated invariants can be used to verify correctness of these algorithms and are helpful in optimising quantum Metropolis sampling. To our knowledge, this paper is the first attempt to define the notion of invariant and to develop a method of invariant generation for quantum programs.
Association for Computing Machinery (ACM)
Title: Invariants of quantum programs: characterisations and generation
Description:
Program invariant is a fundamental notion widely used in program verification and analysis.
The aim of this paper is twofold: (i) find an appropriate definition of invariants for quantum programs; and (ii) develop an effective technique of invariant generation for verification and analysis of quantum programs.
Interestingly, the notion of invariant can be defined for quantum programs in two different ways -- additive invariants and multiplicative invariants -- corresponding to two interpretations of implication in a continuous valued logic: the Lukasiewicz implication and the Godel implication.
It is shown that both of them can be used to establish partial correctness of quantum programs.
The problem of generating additive invariants of quantum programs is addressed by reducing it to an SDP (Semidefinite Programming) problem.
This approach is applied with an SDP solver to generate invariants of two important quantum algorithms -- quantum walk and quantum Metropolis sampling.
Our examples show that the generated invariants can be used to verify correctness of these algorithms and are helpful in optimising quantum Metropolis sampling.
To our knowledge, this paper is the first attempt to define the notion of invariant and to develop a method of invariant generation for quantum programs.

Related Results

Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
The asymmetric transfers of visual perceptual learning determined by the stability of geometrical invariants
The asymmetric transfers of visual perceptual learning determined by the stability of geometrical invariants
Abstract We quickly and accurately recognize the dynamic world by extracting invariances from highly variable scenes, a process can be continuously optimized through visual percept...
The asymmetric transfers of visual perceptual learning determined by the stability of geometrical invariants
The asymmetric transfers of visual perceptual learning determined by the stability of geometrical invariants
Abstract We could recognize the dynamic world quickly and accurately benefiting from extracting invariance from highly variable scenes, and this process can be continuously optimiz...
The asymmetric transfers of visual perceptual learning determined by the stability of geometrical invariants
The asymmetric transfers of visual perceptual learning determined by the stability of geometrical invariants
Abstract We quickly and accurately recognize the dynamic world by extracting invariances from highly variable scenes, a process can be continuously optimized through visual percept...

Back to Top