Javascript must be enabled to continue!
The growth of snow bedforms
View through CrossRef
<p>Wind-blown snow does not lie flat. It self-organizes into dunes, waves, ripples, and anvil-shaped sastrugi. These features, called snow bedforms, are high-speed analogues of sand features barchans, ripples, and yardangs. Snow bedforms appear within hours or days after a blizzard, and may migrate as fast as several meters per hour. They are widespread, and affect the albedo and thermal properties of snow across the polar regions, but thus far they have attracted little attention within aeolian geomorphology.</p><p>For the past three winters, I have documented the growth of snow bedforms in Colorado Front Range. I present time-lapse footage showing the movement of snow dunes, ripples and sastrugi (see tinyurl.com/bedform-videos). These observations show that (1) snow is only flat when winds are slower than 6.4 m/s (2) snow dunes adjust minute-by-minute to changes in wind speed, (3) the most widespread bedform, sastrugi, evolve by migrating and eroding downwind, and (4) snow waves and dunes deposit layers of cohesive snow in their wakes, and thus aid snow deposition in windy conditions. These observations provide the basis for new conceptual models of bedform evolution based on the rates of snowfall, aeolian transport, erosion, and snow sintering across the snowscape.</p>
Title: The growth of snow bedforms
Description:
<p>Wind-blown snow does not lie flat.
It self-organizes into dunes, waves, ripples, and anvil-shaped sastrugi.
These features, called snow bedforms, are high-speed analogues of sand features barchans, ripples, and yardangs.
Snow bedforms appear within hours or days after a blizzard, and may migrate as fast as several meters per hour.
They are widespread, and affect the albedo and thermal properties of snow across the polar regions, but thus far they have attracted little attention within aeolian geomorphology.
</p><p>For the past three winters, I have documented the growth of snow bedforms in Colorado Front Range.
I present time-lapse footage showing the movement of snow dunes, ripples and sastrugi (see tinyurl.
com/bedform-videos).
These observations show that (1) snow is only flat when winds are slower than 6.
4 m/s (2) snow dunes adjust minute-by-minute to changes in wind speed, (3) the most widespread bedform, sastrugi, evolve by migrating and eroding downwind, and (4) snow waves and dunes deposit layers of cohesive snow in their wakes, and thus aid snow deposition in windy conditions.
These observations provide the basis for new conceptual models of bedform evolution based on the rates of snowfall, aeolian transport, erosion, and snow sintering across the snowscape.
</p>.
Related Results
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Characteristics of Taiga and Tundra Snowpack in Development and Validation of Remote Sensing of Snow
Remote sensing of snow is a method to measure snow cover characteristics without direct physical contact with the target from airborne or space-borne platforms. Reliable estimates ...
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
Dynamic Snow Distribution Modeling using the Fokker-Planck Equation Approach
<p>The Fokker-Planck equation (FPE) describes the time evolution of the distribution function of fluctuating macroscopic variables.&#160; Although the FPE was...
A snow reanalysis for Italy: IT-SNOW
A snow reanalysis for Italy: IT-SNOW
Quantifying the amount of snow deposited across the landscape at any given time is the main goal of snow hydrology. Yet, answering this apparently simple question is still elusive ...
Snow Cover Distribution, Variability, and Response to Climate Change in Western China
Snow Cover Distribution, Variability, and Response to Climate Change in Western China
Abstract
A study is presented of the geographical distribution and spatial and temporal variabilities of the western China snow cover in the past 47 yr between 1951 ...
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
The additive value of multi-scale remote sensing snow products for alpine above-snow Cosmic Ray Neutron Sensing
Alpine snow cover is shaped by complex topography, wind and insulation patterns, causing strong lateral heterogeneity in snow water equivalent (SWE) within only a few meters distan...
Field analogues and laboratory experiments to constrain sublimation waves on planetary icy surfaces
Field analogues and laboratory experiments to constrain sublimation waves on planetary icy surfaces
<p><strong><span lang="EN-US">Sublimation combined with wind: </span></strong><span l...
Combined measurement of snow depth and sea ice thickness by helicopter EM bird in McMurdo Sound, Antarctica
Combined measurement of snow depth and sea ice thickness by helicopter EM bird in McMurdo Sound, Antarctica
<p>Snow on sea ice is a controlling factor for ocean-atmosphere heat flux and thus ice thickness growth, and surface albedo. Active and passive microwave remote sensi...
Streamlined subglacial bedform sensitivity to bed characteristics across the deglaciated Northern Hemisphere
Streamlined subglacial bedform sensitivity to bed characteristics across the deglaciated Northern Hemisphere
Streamlined subglacial bedforms observed in deglaciated landscapes provide the opportunity to assess the sensitivity of glacier dynamics to bed characteristics across broader spati...

