Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Solar Thermal Process Parameters Forecasting for Evacuated Tubes Collector (ETC) Based on RNN-LSTM

View through CrossRef
Solar Heat for Industrial Process (SHIP) systems are a clean source of alternative and renewable energy for industrial processes. A typical SHIP system consists of a solar panel connected with a thermal storage system along with necessary piping. Predictive maintenance and condition monitoring of these SHIP systems are essential to prevent system downtime and ensure a steady supply of heated water for a particular industrial process. This paper proposes the use of recurrent neural network-based predictive models to forecast solar thermal process parameters. Data of five process parameters namely - Solar Irradiance, Solar Collector Inlet & Outlet Temperature, and Flux Calorimeter Readings at two points were collected throughout a four-month period. Two variants of RNN, including LSTM and Gated Recurrent Units, were explored and the performance for this forecasting task was compared. The results show that Root Mean Square Errors (RMSE) between the actual and predicted values were 0.4346 (Solar Irradiance), 61.51 (Heat Meter 1), 23.85 (Heat Meter 2), Inlet Temperature (0.432) and Outlet Temperature (0.805) respectively. These results open up possibilities for employing a deep learning based forecasting method in the application of SHIP systems. ABSTRAK: Penggunaan sumber bersih seperti Tenaga Solar dalam Proses Industri (SHIP) adalah satu kaedah alternatif untuk menhasilkan tenaga yang boleh diperbaharui bagi mengurangkan kesan gas rumah hijau yang terhasil dari proses industri. Sistem SHIP biasanya mengandungi panel solar dan sistem penyimpanan haba yang berhubung melalui paip yang sesuai. Penyelengaraan secara berkala diperlukan bagi memastikan sistem ini sentiasa membekalkan tenaga solar pada kadar bersesuaian dan bekalan tenaga solar yang terhasil berterusan dan tidak menjejaskan sistem pemanasan air bagi sesuatu proses industri. Kajian ini mencadangkan penggunaan model ramalan rangkaian neural berulang bagi meramal parameter proses pemanasan solar. Kelima-lima parameter proses iaitu – Iradiasi Solar, Suhu Saluran Keluar & Masuk Pengumpul Solar dan Bacaan Kalorimeter Fluks pada dua tempat diambil sepanjang empat bulan (dari Julai 2021 sehingga Oktober 2021). Dapatan menunjukkan dua varian RNN termasuk LSTM dan Unit Berulang dapat dibanding prestasinya bagi tugas ramalan ini. Dapatan kajian menunjukkan Ralat Punca Min Kuasa Dua (RMSE) antara bacaan sebenar dan ramalan adalah masing-masing 0.4346 (Iradiasi Solar), 61.51 (Meter Terma 1), 23.85 (Meter Terma 2), Suhu Salur Masuk (0.432) and Suhu Salur Keluar (0.805). Ini membuka peluang kajian mendalam berdasarkan kaedah ramalan dalam aplikasi sistem SHIP.
Title: Solar Thermal Process Parameters Forecasting for Evacuated Tubes Collector (ETC) Based on RNN-LSTM
Description:
Solar Heat for Industrial Process (SHIP) systems are a clean source of alternative and renewable energy for industrial processes.
A typical SHIP system consists of a solar panel connected with a thermal storage system along with necessary piping.
Predictive maintenance and condition monitoring of these SHIP systems are essential to prevent system downtime and ensure a steady supply of heated water for a particular industrial process.
This paper proposes the use of recurrent neural network-based predictive models to forecast solar thermal process parameters.
Data of five process parameters namely - Solar Irradiance, Solar Collector Inlet & Outlet Temperature, and Flux Calorimeter Readings at two points were collected throughout a four-month period.
Two variants of RNN, including LSTM and Gated Recurrent Units, were explored and the performance for this forecasting task was compared.
The results show that Root Mean Square Errors (RMSE) between the actual and predicted values were 0.
4346 (Solar Irradiance), 61.
51 (Heat Meter 1), 23.
85 (Heat Meter 2), Inlet Temperature (0.
432) and Outlet Temperature (0.
805) respectively.
These results open up possibilities for employing a deep learning based forecasting method in the application of SHIP systems.
ABSTRAK: Penggunaan sumber bersih seperti Tenaga Solar dalam Proses Industri (SHIP) adalah satu kaedah alternatif untuk menhasilkan tenaga yang boleh diperbaharui bagi mengurangkan kesan gas rumah hijau yang terhasil dari proses industri.
Sistem SHIP biasanya mengandungi panel solar dan sistem penyimpanan haba yang berhubung melalui paip yang sesuai.
Penyelengaraan secara berkala diperlukan bagi memastikan sistem ini sentiasa membekalkan tenaga solar pada kadar bersesuaian dan bekalan tenaga solar yang terhasil berterusan dan tidak menjejaskan sistem pemanasan air bagi sesuatu proses industri.
Kajian ini mencadangkan penggunaan model ramalan rangkaian neural berulang bagi meramal parameter proses pemanasan solar.
Kelima-lima parameter proses iaitu – Iradiasi Solar, Suhu Saluran Keluar & Masuk Pengumpul Solar dan Bacaan Kalorimeter Fluks pada dua tempat diambil sepanjang empat bulan (dari Julai 2021 sehingga Oktober 2021).
Dapatan menunjukkan dua varian RNN termasuk LSTM dan Unit Berulang dapat dibanding prestasinya bagi tugas ramalan ini.
Dapatan kajian menunjukkan Ralat Punca Min Kuasa Dua (RMSE) antara bacaan sebenar dan ramalan adalah masing-masing 0.
4346 (Iradiasi Solar), 61.
51 (Meter Terma 1), 23.
85 (Meter Terma 2), Suhu Salur Masuk (0.
432) and Suhu Salur Keluar (0.
805).
Ini membuka peluang kajian mendalam berdasarkan kaedah ramalan dalam aplikasi sistem SHIP.

Related Results

Solar Trackers Using Six-Bar Linkages
Solar Trackers Using Six-Bar Linkages
Abstract A solar panel faces the sun or has the solar ray normal to its face to enhance power reaping. A fixed solar panel can only meet this condition at one moment...
Energy-efficient architectures for recurrent neural networks
Energy-efficient architectures for recurrent neural networks
Deep Learning algorithms have been remarkably successful in applications such as Automatic Speech Recognition and Machine Translation. Thus, these kinds of applications are ubiquit...
The Effect of Using Secondary Reflectors on the Thermal Performance of Solar Collectors with Evacuated Tubes
The Effect of Using Secondary Reflectors on the Thermal Performance of Solar Collectors with Evacuated Tubes
The aim of this paper is to improve the thermal performance of the evacuated tube solar collectors by using secondary reflectors and covering the collector surface area with an alu...
Development of a Recurrent Neural Network Model for Prediction of Dengue Importation
Development of a Recurrent Neural Network Model for Prediction of Dengue Importation
ObjectiveWe aim to develop a prediction model for the number of imported cases of infectious disease by using the recurrent neural network (RNN) with the Elman algorithm1, a type o...
ANALYSIS OF THE OPERATION MODE OF THE SOLAR POWER PLANT
ANALYSIS OF THE OPERATION MODE OF THE SOLAR POWER PLANT
The article examines the load change schedule of the solar power plant in the Ukraine-Moldova energy union. The analysis of data averaged at minute and 15-minute intervals in the p...
Combination Approach of LSTM and CNN in Solar Energy Production Prediction
Combination Approach of LSTM and CNN in Solar Energy Production Prediction
Introduction: The growing demand for cleaner energy alternatives has led to a significant increase in solar photovoltaic (PV) installations. However, the integration of solar energ...
PERFORMANCE IMPROVEMENT OF ENERGY EFFICIENCY IN HEAT PIPE SOLAR COLLECTOR WITH NANO COMPOSITE REVIEW
PERFORMANCE IMPROVEMENT OF ENERGY EFFICIENCY IN HEAT PIPE SOLAR COLLECTOR WITH NANO COMPOSITE REVIEW
The intension of this research work is to improve the performance of evacuated heat pipe collector with Nano composite. Solar collector includes absorber unit in order to transfer ...
RNN-LSTM BASED REGULAR HEALTH FACTOR ANALYSIS IN MEDICAL ENVIRONMENT
RNN-LSTM BASED REGULAR HEALTH FACTOR ANALYSIS IN MEDICAL ENVIRONMENT
In an era where fast-paced routines, high stress, and unhealthy habits have become the norm, modern society is facing a surge in health problems such as high blood pressure, diabet...

Back to Top