Javascript must be enabled to continue!
A Fast Forward and Inversion Strategy for Three-Dimensional Gravity Field
View through CrossRef
Obtaining a three-dimensional (3D) density distribution within a reasonable time is one of the most critical problems in gravity exploration. In this paper, we present an efficient 3D forward modeling and inversion method for gravity data. In forward modeling, the 3D model is discretized into multiple horizontal layers, with the gravity field at a point on the surface being the sum of the gravity fields from all layers. To calculate the gravity field from each horizontal layer, we use the fast Fourier transform (FFT) method and the Block Toeplitz with Toeplitz Blocks (BTTB) matrix, which dramatically reduces both the computation time and storage requirement. In the inversion, the observed gravity data are separated into multiple gravity components of different depths using the cutting separation method. An iterative method is used to adjust the model to fit the above gravity component for each cutting radius. The initial model is constructed from the transformation of gravity components. These methods were applied to both synthetic data and field data. The numerical simulation validated the proposed methods, and the inversion results of field data were consistent with information obtained from well logging. The computational time and memory usage were also reasonable.
Title: A Fast Forward and Inversion Strategy for Three-Dimensional Gravity Field
Description:
Obtaining a three-dimensional (3D) density distribution within a reasonable time is one of the most critical problems in gravity exploration.
In this paper, we present an efficient 3D forward modeling and inversion method for gravity data.
In forward modeling, the 3D model is discretized into multiple horizontal layers, with the gravity field at a point on the surface being the sum of the gravity fields from all layers.
To calculate the gravity field from each horizontal layer, we use the fast Fourier transform (FFT) method and the Block Toeplitz with Toeplitz Blocks (BTTB) matrix, which dramatically reduces both the computation time and storage requirement.
In the inversion, the observed gravity data are separated into multiple gravity components of different depths using the cutting separation method.
An iterative method is used to adjust the model to fit the above gravity component for each cutting radius.
The initial model is constructed from the transformation of gravity components.
These methods were applied to both synthetic data and field data.
The numerical simulation validated the proposed methods, and the inversion results of field data were consistent with information obtained from well logging.
The computational time and memory usage were also reasonable.
Related Results
Gravity data reduction, Bouguer anomaly, and gravity disturbance
Gravity data reduction, Bouguer anomaly, and gravity disturbance
Each point on the earth has a gravity and gravity potential value. Surfaces formed by connecting points with equal gravity potential values are called equipotential surfaces or lev...
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
Abstract. The Mesosphere transitional region over low latitude is a distinct and highly turbulent zone of the atmosphere. A transition MLT region is connected with dynamic processe...
Using spherical scaling functions in scalar and vector airborne gravimetry
Using spherical scaling functions in scalar and vector airborne gravimetry
<p>Airborne gravimetry is capable to provide Earth&#8217;s gravity data of high accuracy and spatial resolution for any area of interest, in particular for ha...
Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion
Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion
Abstract
In order to develop a geophysical earth model that is consistent with the measured geophysical data, two types of inversions are commonly used: a physics-ba...
The improvement of sparsity gravity inversion using an adaptive lanczos bidiagonalization method
The improvement of sparsity gravity inversion using an adaptive lanczos bidiagonalization method
Inversion of gravity data is one the important steps in the interpretation of practical data. The detection of sharp boundaries between anomalous bodies and host rocks is an intere...
The Absolute Gravity Reference Network of Italy
The Absolute Gravity Reference Network of Italy
The project for realizing the reference network for absolute gravity in the Italian area is presented. This fundamental infrastructure is the general frame for all the scientific a...
Investigating the role of gravity waves in mesosphere and lower-thermosphere (MLT) inversions at low latitudes
Investigating the role of gravity waves in mesosphere and lower-thermosphere (MLT) inversions at low latitudes
Abstract. The mesosphere and lower-thermosphere (MLT) transitional region, encompassing a height range of 60–100 km, is a distinct and highly turbulent zone within Earth's atmosphe...
Application of actuator dynamics inversion techniques to active vibration control systems and shake table testing
Application of actuator dynamics inversion techniques to active vibration control systems and shake table testing
Excessive vibrations problems usually arise in lightweight structures subjected to human actions. The active vibration absorber constitutes an effective solution to mitigate these ...

